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Contact geometry (1)

A (2n + 1)-dimensional manifold M is a contact manifold if there
exists a 1-form η (called a contact 1-form) on M such that

η ∧ (dη)n−1 6= 0 .

Associated with a contact form η there exists a unique vector
field Rη called the Reeb vector field defined by the contractions
(interior products):

i(Rη)η = 1 ,

i(Rη)dη = 0 .



Contact geometry (2)

Every vector field X on M may be decomposed as

X = (i(X )η)Rη + X̂

where X̂ is the horizontal part of X , i. e. in the kernel of η.

Every 1-form ψ may be decomposed as

ψ = (i(Rη)ψ)η + ψ̂ ,

where ψ̂ is the semi-basic component of ψ satisfying the
relation

i(Rη)ψ̂ = 0 .



Contact geometry (3)

A vector field X on (M, η) is an infinitesimal contact
automorphism if and only if there exists a differentiable function
ρ such that

L(X )η = ρη .

We shall use the decomposition

Xf = fRη + X̂f ,

where fRη and X̂f are, respectively, the vertical and horizontal
components with

f = i(Xf )η .



Contact geometry (4)

With the help of Cartan’s formula connecting the Lie derivative
with the interior product,

L(X ) = d ◦ i(X ) + i(X ) ◦ d ,

in the case of an infinitesimal contact automorphism Xf

df + i(Xf )dη = ρη .

Using the properties of the contact form η we have

ρ = i(Rη)df .

The condition ρ = 0 expresses the fact that f is a first integral of
the vector field Rη being a constant along the flow of the vector
field Rη.



Contact geometry (5)

A chosen contact form η on M defines an isomorphism Φ from
the vector space of infinitesimal contact automorphisms onto
the set C∞(M) of smooth functions on M:

Φ(Xf ) = f = i(Xf )η .

Let us remark that the Reeb vector field

Rη = Φ−1(1)

is an infinitesimal automorphism of the contact form η with
ρ = 0.



Symplectic Hamiltonian systems (1)

A symplectic manifold is a differential 2n-dimensional manifold
M with a symplectic 2-form Ω closed and non-degenerate.
Locally, by Darboux theorem, we can find local coordinates
(q1, . . . ,qn; p1, . . . ,pn) such that

Ω =
n∑

i=1

= dqi ∧ dpi .

In symplectic geometry a Hamiltonian is a smooth function H
such that

i(XH)Ω = dH ,

where XH is an infinitesimal symplectomorphismm i.e.

L(XH)Ω = 0 .

Note: H exists only if the de Rham cohomology class of i(XH)Ω
vanishes.



Symplectic Hamiltonian systems (2)
A Hamiltonian system is a triple (M,Ω,H) where (M,Ω) is a
symplectic manifold and H ∈ C∞(M,R) is a function called the
Hamiltonian function. A Hamiltonian system is simply a 1-st
order differential system associated to the Hamiltonian vector
field:

ẋ = XH .

The Poisson bracket of two functions f ,g ∈ C∞(M,R) is

{f ,g} := Ω(Xf ,Xg) ,

where Xf ,Xg are the corresponding vector fields to the
functions f ,g.
If a function f is invariant under the flow of XH

XH f = {f ,H} = 0 ,

it represents a first integral of motion.



Symplectic Hamiltonian systems (3)
A Hamiltonian system (M,Ω,H) is completely integrable if it
possesses n independent integrals of motion f1 = H, f2, . . . , fn
which are pairwise in involution with respect to the Poisson
bracket:

{fi , fj} = 0 for all i , j = 1, . . . ,n .

According to Arnold-Liouville theorem, for an integrable system
with integrals of motion f1 = H, f2, . . . , fn there exist the
coordinates ϑ1, . . . , ϑn known as angle coordinates in which the
flows of the vector field Xf1 , . . . ,Xfn are linear. There are
coordinates I1, . . . , In known as action coordinates,
complementary to the angle coordinates, such that Ii are
integrals of motion.
(I1, . . . , In;ϑ1, . . . , ϑn) form a Darboux chart and the symplectic
form becomes

Ω =
n∑

i=1

= dIi ∧ dϑi .



Contact Hamiltonian systems (1)

Goal: To give a similar construction in contact geometry.

Note: Unlike the symplectic case, contact structures are
automatically Hamiltonian.

In the frame of contact geometry, the vector field Xf = Φ−1(f ) is
called the contact Hamiltonian vector field and similarly

ẋ = Xf ,

is the contact Hamiltonian equation corresponding to f .

Xf is an infinitesimal automorphism of η if and only if df is
semi-basic.



Contact Hamiltonian systems (2)

It is often convenient to consider the Reeb vector field Rη as the
Hamiltonian vector field with 1 = η(Rη) as the Hamiltonian. In
this case the Hamiltonian contact structure is said to be of
Reeb type and the Hamiltonian is understood to be the
constant function 1.

In connection with the isomorphism Φ, the Lie algebra structure
of C∞(M) is given by the Jacobi bracket

[f ,g]η = Φ[Xf ,Xg] = −i(Xg)df + f i(Rη)dg
= −i(Xf )i(Xg)dη + f i(Rη)dg − gi(Rη)df .

Assuming that f and g are first integrals of the vector field Rη

we have
[f ,g]η = dη(Xf ,Xg) .



Contact Hamiltonian systems (3)

Also
X[f ,g]η = [Xf ,Xg]η ,

X[1,g]η = [Rη,Xf ]η .

Notice that Leibniz rule is replaced by

[f ,gh]η = [f ,g]ηh + g[f ,h]η − [f ,1]ηgh ,

which explains the difference between Jacobi brackets and
Poisson brackets.



Contact Hamiltonian systems (4)

A Hamiltonian contact structure of Reeb type is said to be
completely integrable if there exists (n + 1) first integrals

f0 = 1, f1, . . . , fn

that are independent and in involution.

In addition a completely integrable contact Hamiltonian system
is said to be of toric type if the corresponding vector fields

Xf0 = Rη,Xf1 , . . . ,Xfn

form the Lie algebra of a torus T n+1. The action of a torus T n+1

on a contact (2n + 1)-dimensional manifold (M, η) is completely
integrable if it is effective and preserve the contact structure η.



Formulae in local coordinates (1)

Let us consider in a neighborhood U of a point x of M an
adapted system of local coordinates (x0, x1, . . . , xn, y1, . . . , yn).
According to Darboux’s theorem, in the case of contact
geometry, the contact form can be written as

η = dx0 −
n∑

k=1

ykdxk ,

and the Reeb vector field defined by η is

Rη =
∂

∂x0 .

In the above adapted system of local coordinates, a vector field
can be written as

X = a0
∂

∂x0 +
n∑

k=1

ak
∂

∂xk +
n∑

k=1

bk
∂

∂yk .



Formulae in local coordinates (2)

A vector field Xf = Φ−1(f ) has in an local system of coordinates
the form

Xf =
(

f − yk ∂f
∂yk

) ∂

∂x0 −
∂f
∂yk

∂

∂xk +
( ∂f
∂xk + yk ∂f

∂x0

) ∂

∂yk .

Jacobi bracket of two functions f and g may be expressed as

[f ,g]η =
(

f − yk ∂f
∂yk

) ∂g
∂x0 −

(
g − yk ∂g

∂yk

) ∂f
∂x0

+
( ∂f
∂xk

∂g
∂yk −

∂g
∂xk

∂f
∂yk

)
.



Example: Sasaki-Einstein spaces (1)

A contact Riemannian manifold M equipped with a metric g is
Sasakian if its metric cone

(C(M), ḡ) = (R+ ×M,dr2 + r2g) ,

is Kähler. Here r ∈ (0,∞) may be considered as a coordinate
on the positive real line R+. Moreover if the Sasaki manifold is
Einstein

Ricg = 2ng ,

then the Kähler metric cone is Ricci flat (Ricḡ = 0) , i.e. a
Calabi-Yau manifold.



Example: Sasaki-Einstein spaces (2)
Sasaki-Einstein space T 1,1 (1)

The homogeneous toric Sasaki-Einstein 5-dimensional space
T 1,1 is a U(1) bundle over S2 × S2. We choose the coordinates
(θi , φi) , i = 1,2 to parametrize the two spheres S2 in the
standard way, while the angle ψ ∈ [0,4π) parametrizes the
U(1) fiber. Metric on T 1,1 may be written as

ds2(T 1,1) =
1
6

(dθ2
1 + sin2 θ1dφ2

1 + dθ2
2 + sin2 θ2dφ2

2)

+
1
9

(dψ + cos θ1dφ1 + cos θ2dφ2)2 .

We introduce ν = 1
2ψ so that ν has canonical period 2π. The

globally defined contact 1-form η is:

η =
1
3

(2dν + cos θ1dφ1 + cos θ2dφ2) .



Example: Sasaki-Einstein spaces (3)
Sasaki-Einstein space T 1,1 (2)

Reeb vector field Rη has the form

Rη =
3
2
∂

∂ν
.

An effectively acting T3 action is

e1 =
∂

∂φ1
+

1
2
∂

∂ν
,

e2 =
∂

∂φ2
+

1
2
∂

∂ν
,

e3 =
∂

∂ν
,

which preserves the contact structure η.



Example: Sasaki-Einstein spaces (4)
Sasaki-Einstein space T 1,1 (3)

Let F = (f0, f1, f2) the set of independent first integrals in
involution and X = (Rη,Xf1 ,Xf2) the corresponding set of
infinitesimal automorphisms of η. Let T be a compact
connected component of the level set {f1 = c1, f2 = c2} and
df1 ∧ df2 6= 0 on T . Then T is diffeomorphic to a T 3 torus.
There exist a neighborhood U of T and a diffeomorphism,
φ : U → T 3 × D, with D ∈ R2,

φ(x) = (ϑ0, ϑ1, ϑ2, y1, y2) ,

and the contact form has the canonical expression:

η0 = (φ−1)∗η = y0dϑ0 + y1dϑ1 + y2dϑ2 .

We refer to the local coordinates (ϑi , yi) as generalized contact
action-angle coordinates.



Example: Sasaki-Einstein spaces (5)
Sasaki-Einstein space T 1,1 (4)

η0(
∂

∂ϑi
) = yi

are the contact Hamiltonians of the independent set of vector
fields X .

It is convenient to choose

ϑ0 =
2
3
ν , ϑ1 = φ1 , ϑ2 = φ2 .

First integrals of the Hamiltonian contact structure are

f0 = y0 ≡ 1 , fi = yi =
1
3

cos θi , i = 1,2 ,

which are independent and in involution

[1, fi ]η = [fi , fj ]η = 0 , i , j = 1,2 .



Example: Sasaki-Einstein spaces (6)
Sasaki-Einstein space T 1,1 (5)

Action of the torus T 3 is given by translations of the angles ϑi .

The flows of the set X on invariant tori is quasi-periodic

(ϑ0, ϑ1, ϑ2)→ (ϑ0 + tω0, ϑ1 + tω1, ϑ2 + tω2) ,

where the frequencies ωi depend only on yi .
In order to construct effectively the flow of Xf and find the
frequencies ωi we define the family of 1-forms

ηt = η0 + tdf ,

where f is one of the first integrals of the Reeb vector field Rη.
ηt is a contact form also having the Reeb vector field Rη.



Example: Sasaki-Einstein spaces (7)
Sasaki-Einstein space T 1,1 (6)

Consider the vector field X = −fRη and let φt the flow of this
vector field. Because f is a first integral of the T 3 action, φt
commutes with this action.
Moser’s deformation:

L(X )ηt = −df = −∂ηt

∂t
,

which imply

d
dt

(φ∗t ηt ) = φ∗
(
L(X )ηt +

∂ηt

∂t

)
= 0 .

Therefore φ∗1η1 = η0 and we can obtain the coordinates in
which the 1-form ηt has the canonical expression. Choosing the
first integrals fi = yi , we extract the frequencies:

ωi = ln cos θi , i = 1,2 ,



Example: Sasaki-Einstein spaces (8)
Sasaki-Einstein space Y p,q (1)

Infinite family Y p,q of Einstein-Sasaki metrics on S2 × S3

provides supersymmetric backgrounds relevant to the AdS/CFT
correspondence. The total space Y p,q of an S1-fibration over
S2 × S2 with relative prime winding numbers p and q is
topologically S2 × S3.
Explicit local metric of the 5-dim. Y p,q manifold is given by the
line element

ds2(Y p,q) =
1− y

6
(dθ2 + sin2 θ dφ2) +

1
w(y)q(y)

dy2

+
q(y)

9
(dψ − cos θ dφ)2

+ w(y)

[
dα +

a− 2y + y2

6(a− y2)
[dψ − cos θ dφ]

]2

,

where a is a constant and



Example: Sasaki-Einstein spaces (9)
Sasaki-Einstein space Y p,q (2)

w(y) =
2(a− y2)

1− y
, q(y) =

a− 3y2 + 2y3

a− y2

For 0 < a < 1 we can take the range of the angular coordinates
(θ,Φ,Ψ) to be 0 ≤ θ ≤ π ,0 ≤ Φ ≤ 2π ,0 ≤ Ψ ≤ 2π while y lies
between the negative and the smallest positive zeros of q(y).
For any p and q coprime, the space Y p,q is topologically
S2 × S3 and one may take

0 ≤ α ≤ 2π` ,

where
` =

q
3q2 − 2p2 + p(4p2 − 3q2)1/2 .



Example: Sasaki-Einstein spaces (10)
Sasaki-Einstein space Y p,q (3)

Sasakian 1-form η is:

η = −2ydα +
1− y

3
(dψ − cos θdφ) .

and the Reeb vector field is

Rη = 3
∂

∂ψ
− 1

2
∂

∂α
.

Basis for an effectively acting T3 action is

e1 =
∂

∂φ
+

∂

∂ψ
,

e2 =
∂

∂φ
− (p − q)`

2
∂

∂α
,

e3 = `
∂

∂α
.



Example: Sasaki-Einstein spaces (11)
Sasaki-Einstein space Y p,q (4)

For the canonical forms η and Reeb vector field we introduce
the angle variables

ϑ0 =
ψ

3
, ϑ1 = −6α− ψ , ϑ2 = φ ,

and the generalized action variables

y0 ≡ 1 , y1 =
y
3
, y2 =

y − 1
3

cos θ .

These functions are first integrals of the Hamiltonian contact
structure, independent and in involution.

The corresponding set of infinitesimal automorphisms is
X = (Rη,Xy1 ,Xy2). The flows of the set X on invariant tori is
quasi-periodic and the evaluation of the frequencies proceeds
as in the case of the space T 1,1.



Outlook

I Contact Hamiltonian dynamics on higher dimensional toric
Sasaki-Einstein spaces

I Time-dependent Hamilton function
I Dissipative Hamiltonian systems


