Complete integrability in toric contact geometry

Mihai Visinescu

Department of Theoretical Physics National Institute for Physics and Nuclear Engineering "Horia Hulubei" Bucharest, Romania

> 9th Mathematical Physics Meeting Belgrade, September 18–23, 2017

References

- V. Slesar, M. Visinescu, G. E. Vîlcu, *Phys. Scr.* 89, 125205 (2014)
- V. Slesar, M. Visinescu, G. E. Vîlcu, *EPL –Europhys. Lett.* 110, 31001 (2015)
- E. M. Babalic, M. Visinescu, Mod. Phys. Lett. A, 30, 1550180 (2015)
- V. Slesar, M. Visinescu, G. E. Vîlcu, Annals of Physics 361, 548–562 (2015)
- M. Visinescu, Eur. Phys. J. C 76, 498 (2016)
- M. Visinescu, J. Phys.: Conf. Series 804, 012042 (2017)
- M. Visinescu, Prog. Theor. Exp. Phys. 2017, 013A01 (2017)
- M. Visinescu, arXiv:1704.04034

Outline

- 1. Contact geometry
- 2. Symplectic Hamiltonian systems
- 3. Contact Hamiltonian systems
- 4. Formulae in local coordinates
- **5.** Example: Sasaki-Einstein space $T^{1,1}$
- 6. Example: Sasaki-Einstein space Y^{p,q}
- 7. Outlook

Contact geometry (1)

A (2n + 1)-dimensional manifold *M* is a *contact manifold* if there exists a 1-form η (called a contact 1-form) on *M* such that

 $\eta \wedge (d\eta)^{n-1} \neq 0$.

Associated with a contact form η there exists a unique vector field R_{η} called the *Reeb vector field* defined by the contractions (interior products):

 $i(R_\eta)\eta = 1$, $i(R_\eta)d\eta = 0$.

Contact geometry (2)

Every vector field X on M may be decomposed as

 $X = (\mathbf{i}(X)\eta)R_{\eta} + \hat{X}$

where \hat{X} is the horizontal part of X, i. e. in the kernel of η .

Every 1-form ψ may be decomposed as

 $\psi = (\mathbf{i}(\mathbf{R}_{\eta})\psi)\eta + \hat{\psi},$

where $\hat{\psi}$ is the semi-basic component of ψ satisfying the relation

 $i(R_{\eta})\hat{\psi}=0$.

Contact geometry (3)

A vector field X on (M, η) is an infinitesimal contact automorphism if and only if there exists a differentiable function ρ such that

 $\mathcal{L}(\boldsymbol{X})\boldsymbol{\eta} = \boldsymbol{\rho}\boldsymbol{\eta}\,.$

We shall use the decomposition

$$X_f = fR_\eta + \hat{X}_f,$$

where fR_{η} and \hat{X}_{f} are, respectively, the vertical and horizontal components with

 $f = \mathbf{i}(X_f)\eta$.

Contact geometry (4)

With the help of Cartan's formula connecting the Lie derivative with the interior product,

 $\mathcal{L}(X) = \boldsymbol{d} \circ \boldsymbol{i}(X) + \boldsymbol{i}(X) \circ \boldsymbol{d},$

in the case of an infinitesimal contact automorphism X_f

 $df + \mathbf{i}(X_f) d\eta = \rho \eta \,.$

Using the properties of the contact form η we have

 $\rho = \mathbf{i}(\mathbf{R}_{\eta}) df$.

The condition $\rho = 0$ expresses the fact that *f* is a *first integral* of the vector field R_{η} being a constant along the flow of the vector field R_{η} .

Contact geometry (5)

A chosen contact form η on M defines an isomorphism Φ from the vector space of infinitesimal contact automorphisms onto the set $C^{\infty}(M)$ of smooth functions on M:

 $\Phi(X_f)=f=\mathbf{i}(X_f)\eta.$

Let us remark that the Reeb vector field

 $R_{\eta} = \Phi^{-1}(1)$

is an infinitesimal automorphism of the contact form η with $\rho = 0$.

Symplectic Hamiltonian systems (1)

A symplectic manifold is a differential 2n-dimensional manifold M with a symplectic 2-form Ω closed and non-degenerate. Locally, by Darboux theorem, we can find local coordinates $(q_1, \ldots, q_n; p_1, \ldots, p_n)$ such that

$$\Omega = \sum_{i=1}^n = dq_i \wedge dp_i \,.$$

In symplectic geometry a Hamiltonian is a smooth function H such that

 $i(X_H)\Omega = dH$,

where X_H is an infinitesimal symplectomorphismm i.e.

 $\mathcal{L}(X_H)\Omega = 0$.

Note: *H* exists only if the de Rham cohomology class of $i(X_H)\Omega$ vanishes.

Symplectic Hamiltonian systems (2)

A Hamiltonian system is a triple (M, Ω, H) where (M, Ω) is a symplectic manifold and $H \in C^{\infty}(M, \mathbf{R})$ is a function called the *Hamiltonian function*. A Hamiltonian system is simply a 1-st order differential system associated to the Hamiltonian vector field:

$$\dot{x} = X_H$$
.

The Poisson bracket of two functions $f, g \in C^{\infty}(M, \mathbf{R})$ is

 $\{f,g\}:=\Omega(X_f,X_g),$

where X_f, X_g are the corresponding vector fields to the functions f, g. If a function f is invariant under the flow of X_H

 $X_H f = \{f, H\} = 0,$

it represents a *first integral of motion*.

Symplectic Hamiltonian systems (3)

A Hamiltonian system (M, Ω, H) is *completely integrable* if it possesses *n* independent integrals of motion $f_1 = H, f_2, \ldots, f_n$ which are pairwise in involution with respect to the Poisson bracket:

 $\{f_i, f_j\} = 0$ for all i, j = 1, ..., n.

According to Arnold-Liouville theorem, for an integrable system with integrals of motion $f_1 = H, f_2, \ldots, f_n$ there exist the coordinates $\vartheta_1, \ldots, \vartheta_n$ known as *angle coordinates* in which the flows of the vector field X_{f_1}, \ldots, X_{f_n} are linear. There are coordinates l_1, \ldots, l_n known as *action coordinates*, complementary to the angle coordinates, such that l_i are integrals of motion.

 $(I_1, \ldots, I_n; \vartheta_1, \ldots, \vartheta_n)$ form a Darboux chart and the symplectic form becomes

$$\Omega = \sum_{i=1}^n = dl_i \wedge d\vartheta_i.$$

Contact Hamiltonian systems (1)

Goal: To give a similar construction in contact geometry.

Note: Unlike the symplectic case, contact structures are automatically Hamiltonian.

In the frame of contact geometry, the vector field $X_f = \Phi^{-1}(f)$ is called the contact Hamiltonian vector field and similarly

 $\dot{\boldsymbol{x}} = \boldsymbol{X}_f$,

is the *contact Hamiltonian equation* corresponding to *f*.

 X_f is an infinitesimal automorphism of η if and only if *df* is semi-basic.

Contact Hamiltonian systems (2)

It is often convenient to consider the Reeb vector field R_{η} as the Hamiltonian vector field with $1 = \eta(R_{\eta})$ as the Hamiltonian. In this case the Hamiltonian contact structure is said to be of *Reeb type* and the Hamiltonian is understood to be the constant function 1.

In connection with the isomorphism Φ , the Lie algebra structure of $C^{\infty}(M)$ is given by the Jacobi bracket

$$[f,g]_{\eta} = \Phi[X_f,X_g] = -i(X_g)df + fi(R_{\eta})dg$$

= $-i(X_f)i(X_g)d\eta + fi(R_{\eta})dg - gi(R_{\eta})df$

Assuming that f and g are first integrals of the vector field R_{η} we have

 $[f,g]_{\eta}=d\eta(X_f,X_g).$

Contact Hamiltonian systems (3)

Also

$$egin{aligned} X_{[f,g]_\eta} &= [X_f, X_g]_\eta\,, \ X_{[1,g]_\eta} &= [R_\eta, X_f]_\eta\,. \end{aligned}$$

Notice that Leibniz rule is replaced by

$$[f, gh]_{\eta} = [f, g]_{\eta}h + g[f, h]_{\eta} - [f, 1]_{\eta}gh$$

which explains the difference between Jacobi brackets and Poisson brackets.

Contact Hamiltonian systems (4)

A Hamiltonian contact structure of Reeb type is said to be *completely integrable* if there exists (n + 1) first integrals

 $f_0 = 1, f_1, \ldots, f_n$

that are independent and in involution.

In addition a completely integrable contact Hamiltonian system is said to be of toric type if the corresponding vector fields

$$X_{f_0} = R_{\eta}, X_{f_1}, \ldots, X_{f_n}$$

form the Lie algebra of a torus T^{n+1} . The action of a torus T^{n+1} on a contact (2n + 1)-dimensional manifold (M, η) is completely integrable if it is effective and preserve the contact structure η .

Formulae in local coordinates (1)

Let us consider in a neighborhood U of a point x of M an adapted system of local coordinates $(x^0, x^1, \ldots, x^n, y^1, \ldots, y^n)$. According to Darboux's theorem, in the case of contact geometry, the contact form can be written as

$$\eta = dx^0 - \sum_{k=1}^n y^k dx^k \,,$$

and the Reeb vector field defined by η is

$$R_{\eta} = rac{\partial}{\partial x^0}.$$

In the above adapted system of local coordinates, a vector field can be written as

$$X = a_0 \frac{\partial}{\partial x^0} + \sum_{k=1}^n a_k \frac{\partial}{\partial x^k} + \sum_{k=1}^n b_k \frac{\partial}{\partial y^k}.$$

Formulae in local coordinates (2)

A vector field $X_f = \Phi^{-1}(f)$ has in an local system of coordinates the form

$$X_f = \left(f - y^k \frac{\partial f}{\partial y^k}\right) \frac{\partial}{\partial x^0} - \frac{\partial f}{\partial y^k} \frac{\partial}{\partial x^k} + \left(\frac{\partial f}{\partial x^k} + y^k \frac{\partial f}{\partial x^0}\right) \frac{\partial}{\partial y^k}.$$

Jacobi bracket of two functions f and g may be expressed as

$$[f,g]_{\eta} = \left(f - y^{k} \frac{\partial f}{\partial y^{k}}\right) \frac{\partial g}{\partial x^{0}} - \left(g - y^{k} \frac{\partial g}{\partial y^{k}}\right) \frac{\partial f}{\partial x^{0}} \\ + \left(\frac{\partial f}{\partial x^{k}} \frac{\partial g}{\partial y^{k}} - \frac{\partial g}{\partial x^{k}} \frac{\partial f}{\partial y^{k}}\right).$$

Example: Sasaki-Einstein spaces (1)

A contact Riemannian manifold M equipped with a metric g is Sasakian if its metric cone

$$(C(M),\bar{g})=(\mathbb{R}_+\times M,dr^2+r^2g),$$

is Kähler. Here $r \in (0, \infty)$ may be considered as a coordinate on the positive real line \mathbb{R}_+ . Moreover if the Sasaki manifold is Einstein

$$\operatorname{Ric}_g = 2ng$$
,

then the Kähler metric cone is Ricci flat $(\text{Ric}_{\bar{g}} = 0)$, i.e. a Calabi-Yau manifold.

Example: Sasaki-Einstein spaces (2)

Sasaki-Einstein space $T^{1,1}$ (1)

The homogeneous toric Sasaki-Einstein 5-dimensional space $T^{1,1}$ is a U(1) bundle over $S^2 \times S^2$. We choose the coordinates $(\theta_i, \phi_i), i = 1, 2$ to parametrize the two spheres S^2 in the standard way, while the angle $\psi \in [0, 4\pi)$ parametrizes the U(1) fiber. Metric on $T^{1,1}$ may be written as

$$ds^{2}(T^{1,1}) = \frac{1}{6}(d\theta_{1}^{2} + \sin^{2}\theta_{1}d\phi_{1}^{2} + d\theta_{2}^{2} + \sin^{2}\theta_{2}d\phi_{2}^{2}) \\ + \frac{1}{9}(d\psi + \cos\theta_{1}d\phi_{1} + \cos\theta_{2}d\phi_{2})^{2}.$$

We introduce $\nu = \frac{1}{2}\psi$ so that ν has canonical period 2π . The globally defined contact 1-form η is:

$$\eta = \frac{1}{3} (2d\nu + \cos\theta_1 d\phi_1 + \cos\theta_2 d\phi_2).$$

Example: Sasaki-Einstein spaces (3)

Sasaki-Einstein space $T^{1,1}$ (2)

Reeb vector field R_{η} has the form

$$R_{\eta}=rac{3}{2}rac{\partial}{\partial
u}$$
 .

An effectively acting \mathbb{T}^3 action is

$$\begin{split} \mathbf{e}_1 &= \frac{\partial}{\partial \phi_1} + \frac{1}{2} \frac{\partial}{\partial \nu} \,, \\ \mathbf{e}_2 &= \frac{\partial}{\partial \phi_2} + \frac{1}{2} \frac{\partial}{\partial \nu} \,, \\ \mathbf{e}_3 &= \frac{\partial}{\partial \nu} \,, \end{split}$$

which preserves the contact structure η .

Example: Sasaki-Einstein spaces (4)

Sasaki-Einstein space $T^{1,1}$ (3)

Let $\mathcal{F} = (f_0, f_1, f_2)$ the set of independent first integrals in involution and $\mathcal{X} = (R_\eta, X_{f_1}, X_{f_2})$ the corresponding set of infinitesimal automorphisms of η . Let *T* be a compact connected component of the level set $\{f_1 = c_1, f_2 = c_2\}$ and $df_1 \wedge df_2 \neq 0$ on *T*. Then *T* is diffeomorphic to a *T*³ torus. There exist a neighborhood *U* of *T* and a diffeomorphism, $\phi : U \to T^3 \times D$, with $D \in \mathbb{R}^2$,

 $\phi(\mathbf{x}) = (\vartheta_0, \vartheta_1, \vartheta_2, \mathbf{y}_1, \mathbf{y}_2),$

and the contact form has the canonical expression:

$$\eta_0 = (\phi^{-1})^* \eta = y_0 d\vartheta_0 + y_1 d\vartheta_1 + y_2 d\vartheta_2.$$

We refer to the local coordinates (ϑ_i, y_i) as generalized contact action-angle coordinates.

Example: Sasaki-Einstein spaces (5)

Sasaki-Einstein space $T^{1,1}$ (4)

$$\eta_0(\frac{\partial}{\partial\vartheta_i}) = \mathbf{y}_i$$

are the contact Hamiltonians of the independent set of vector fields $\boldsymbol{\mathcal{X}}.$

It is convenient to choose

$$\vartheta_0 = \frac{2}{3}\nu$$
, $\vartheta_1 = \phi_1$, $\vartheta_2 = \phi_2$.

First integrals of the Hamiltonian contact structure are

$$f_0 = y_0 \equiv 1, \ f_i = y_i = \frac{1}{3} \cos \theta_i \quad , \quad i = 1, 2,$$

which are independent and in involution

$$[1, f_i]_{\eta} = [f_i, f_j]_{\eta} = 0$$
, $i, j = 1, 2$.

Example: Sasaki-Einstein spaces (6)

Sasaki-Einstein space $T^{1,1}$ (5)

Action of the torus T^3 is given by translations of the angles ϑ_i .

The flows of the set \mathcal{X} on invariant tori is quasi-periodic

 $(\vartheta_0, \vartheta_1, \vartheta_2) \rightarrow (\vartheta_0 + t\omega_0, \vartheta_1 + t\omega_1, \vartheta_2 + t\omega_2),$

where the *frequencies* ω_i depend only on y_i . In order to construct effectively the flow of X_f and find the frequencies ω_i we define the family of 1-forms

 $\eta_t = \eta_0 + t df \,,$

where *f* is one of the first integrals of the Reeb vector field R_{η} . η_t is a contact form also having the Reeb vector field R_{η} .

Example: Sasaki-Einstein spaces (7)

Sasaki-Einstein space $T^{1,1}$ (6)

Consider the vector field $X = -fR_{\eta}$ and let ϕ_t the flow of this vector field. Because *f* is a first integral of the T^3 action, ϕ_t commutes with this action.

Moser's deformation:

$$\mathcal{L}(X)\eta_t = -df = -rac{\partial\eta_t}{\partial t},$$

which imply

$$\frac{d}{dt}(\phi_t^*\eta_t) = \phi^*\Big(\mathcal{L}(X)\eta_t + \frac{\partial\eta_t}{\partial t}\Big) = \mathbf{0}\,.$$

Therefore $\phi_1^* \eta_1 = \eta_0$ and we can obtain the coordinates in which the 1-form η_t has the canonical expression. Choosing the first integrals $f_i = y_i$, we extract the frequencies:

$$\omega_i = \ln \cos \theta_i \quad , \quad i = 1, 2 \, ,$$

Example: Sasaki-Einstein spaces (8)

Sasaki-Einstein space $Y^{p,q}$ (1)

Infinite family $Y^{p,q}$ of Einstein-Sasaki metrics on $S^2 \times S^3$ provides supersymmetric backgrounds relevant to the AdS/CFT correspondence. The total space $Y^{p,q}$ of an S^1 -fibration over $S^2 \times S^2$ with relative prime winding numbers p and q is topologically $S^2 \times S^3$. Explicit local metric of the 5-dim. $Y^{p,q}$ manifold is given by the line element

$$ds^{2}(Y^{p,q}) = \frac{1-y}{6}(d\theta^{2} + \sin^{2}\theta \, d\phi^{2}) + \frac{1}{w(y)q(y)}dy^{2} + \frac{q(y)}{9}(d\psi - \cos\theta \, d\phi)^{2} + w(y)\left[d\alpha + \frac{a-2y+y^{2}}{6(a-y^{2})}[d\psi - \cos\theta \, d\phi]\right]^{2},$$

where *a* is a constant and

Example: Sasaki-Einstein spaces (9)

Sasaki-Einstein space $Y^{p,q}$ (2)

$$w(y) = \frac{2(a-y^2)}{1-y}$$
, $q(y) = \frac{a-3y^2+2y^3}{a-y^2}$

For 0 < a < 1 we can take the range of the angular coordinates (θ, Φ, Ψ) to be $0 \le \theta \le \pi$, $0 \le \Phi \le 2\pi$, $0 \le \Psi \le 2\pi$ while *y* lies between the negative and the smallest positive zeros of q(y). For any *p* and *q* coprime, the space $Y^{p,q}$ is topologically $S^2 \times S^3$ and one may take

$$\mathbf{0} \le \alpha \le \mathbf{2}\pi\ell\,,$$

where

$$\ell = \frac{q}{3q^2 - 2p^2 + p(4p^2 - 3q^2)^{1/2}} \, .$$

Example: Sasaki-Einstein spaces (10)

Sasaki-Einstein space $Y^{p,q}$ (3)

Sasakian 1-form η is:

$$\eta = -2yd\alpha + \frac{1-y}{3}(d\psi - \cos\theta d\phi).$$

and the Reeb vector field is

$${\it R}_\eta = {\it 3}rac{\partial}{\partial\psi} - rac{{\it 1}}{{\it 2}}rac{\partial}{\partiallpha}$$
 .

Basis for an effectively acting \mathbb{T}^3 action is

$$\begin{split} \mathbf{e}_1 &= \frac{\partial}{\partial \phi} + \frac{\partial}{\partial \psi} \,, \\ \mathbf{e}_2 &= \frac{\partial}{\partial \phi} - \frac{(p-q)\ell}{2} \frac{\partial}{\partial \alpha} \,, \\ \mathbf{e}_3 &= \ell \frac{\partial}{\partial \alpha} \,. \end{split}$$

Example: Sasaki-Einstein spaces (11)

Sasaki-Einstein space Y^{p,q} (4)

For the canonical forms η and Reeb vector field we introduce the angle variables

$$\vartheta_0 = \frac{\psi}{3}, \, \vartheta_1 = -6\alpha - \psi, \, \vartheta_2 = \phi,$$

and the generalized action variables

$$y_0 \equiv 1, y_1 = \frac{y}{3}, y_2 = \frac{y-1}{3} \cos \theta.$$

These functions are first integrals of the Hamiltonian contact structure, independent and in involution.

The corresponding set of infinitesimal automorphisms is $\mathcal{X} = (R_{\eta}, X_{y_1}, X_{y_2})$. The flows of the set \mathcal{X} on invariant tori is quasi-periodic and the evaluation of the frequencies proceeds as in the case of the space $T^{1,1}$.

Outlook

- Contact Hamiltonian dynamics on higher dimensional toric Sasaki-Einstein spaces
- Time-dependent Hamilton function
- Dissipative Hamiltonian systems