
Polynomial f (R) Palatini cosmology
— dynamical system approach

Marek Szydłowski
in collaboration with Adam Krawiec and Aleksander Stachowski

Astronomical Observatory
Jagiellonian University

9th MATHEMATICAL PHYSICS MEETING:
School and Conference on Modern Mathematical Physics

Belgrade, 18-23 September 2017

M. Szydłowski (UJ) Polynomial f (R) Palatini cosmology 1 / 102



Abstract

We investigate cosmological dynamics based on f (R) gravity in the
Palatini formulation. In this study we use the dynamical system methods.
We show that the evolution of the Friedmann equation reduces to the
form of the piece-wise smooth dynamical system. We demonstrate how
the trajectories can be sewn to guarantee C0 inextendibility of the metric.
We point out that importance of dynamical system of Newtonian type
with non-smooth right-hand sides in the context of Palatini cosmology. In
this framework we can investigate naturally singularities which appear in
the past and future of the cosmic evolution.
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Dynamical systems

A dynamic model of a physical phenomenon can be described by a
dynamical system which consists of

1 a space (state space or phase space),
2 a mathematical rule describing the evolution of any point in that

space.
The state of the system is a set of quantities which are considered
important about the system and the state space is the set of all possible
values of these quantities.
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The evolution of continuous dynamical systems is defined by ordinary
differential equations (ODEs) in the form

ẋ = f (x)

where x ∈ X , i.e. x is element of state space X ⊂ Rn, and function
f : X → X is a vector field on Rn such that

f (x) = (f1(x), . . . , fn(x))

and x = (x1, x2, . . . , xn).

It is called an autonomous dynamical system as the vector field does not
depend explicite on time.
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For a qualitative approach to a dynamical system analysis it is necessary to
define a critical point and the behaviour of solution near this point.

Definition
The autonomous equation ẋ = f (x) is said to have a critical point or fixed
point at x = x0 if and only if f (x0) = 0.

Definition
A critical point x = x0 is stable (also called Lyapunov stable) if all solutions
x(t) starting near it stay close to it and asymptotically stable if it is stable
and the solution approach the critical point for all nearby initial conditions.
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Linear stability theory

Given a dynamical system ẋ = f (x) with the critical point at x = x0, the
system is linearised about its critical point by

M = Df (x0) =
(
∂fi
∂xj

)
x=x0

and the matrix M is called the Jacobi matrix.

The eigenvalues of this matrix for the system linearised about the critical
point x0 reveal stability/instability of that point provided that the point is
hyperbolic.

Definition
Let x = x0 be a critical point of the system ẋ = f (x), x ∈ Rn. Then x0 is
said to be hyperbolic if none of the eigenvalues of Df (x0) have zero real
part, and non-hyperbolic otherwise.
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The case of 2D system

Table: Hyperbolic critical points and their asymptotic stability

critical point eigenvalues
stable node λ1 < 0, λ2 < 0
unstable node λ1 > 0, λ2 > 0
saddle λ1, λ2 6= 0, opposite sign
stable focus λ1 = α + iβ, λ2 = α− iβ with α < 0 and β 6= 0
unstable focus λ1 = α + iβ, λ2 = α− iβ with α > 0 and β 6= 0
centre λ1 = iβ, λ2 = −iβ with β 6= 0

If λ1 or λ2 or both are equal zero, the linearization technique does not
allow to determine the stability of critical point.
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Homogeneous cosmological models as dynamical systems

Einstein’s field equations constitute, in general, a very complicated system
of nonlinear, partial differential equations, but what is made use of in
cosmology are the solutions with prior symmetry assumptions postulated
at the very beginning.

In this case, the Einstein field equations can be reduced to a system of
ordinary differential equation, i.e. a dynamical system. Hence, in
cosmology the dynamical systems methods can be applied in a natural
way. The applications of these methods allow to reveal some stability
properties of particular solutions, visualized geometrically as trajectories in
the phase space. Hence, one can see how large the class of the solutions
leading to the desired property is, by means of attractors and the inset of
limit set (an attractor is a limit set with an open inset—all the initial
conditions that end up in some equilibrium state).
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The dynamical system describes the behaviour of the Universe as a whole.

This dynamics should reproduce three periods of the Universe evolution
1 the early time: the expansion (inflation) from the unstable de Sitter

state;
2 the present time: the matter domination epoch necessary for

formation of the large-scale structure of the Universe;
3 the late time: the expansion of the Universe (asymptotically) to

stable de Sitter state.
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FRW models as dynamical system of Newtonian type

If we assume the validity of the Robertson-Walker symmetry for our
Universe which is filled with perfect fluid satisfying the general form of the
equation of state peff = weff(a)ρeff , then ρeff = ρeff(a), i.e. both the
effective energy density ρeff and pressure peff are parameterized by the
scale factor a as a consequence of the conservation condition

ρ̇eff = −3H(ρeff + peff), (1)

where dot denotes differentiation with respect to the cosmological time t
and H = d(ln a)/dt is the Hubble function.

Let consider the acceleration (Raychaudhuri) equation

ä
a = −1

6(ρeff + 3peff). (2)
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We assume that the Universe is filled with standard dust matter (together
with dark matter) and dark energy X

peff = 0 + wXρX ,
ρeff = ρm + ρX ,

(3)

where wX = wX (a) is the coefficient of the equation of state for dark
energy parameterized by the scale factor or redshift z : 1 + z = ( a

a0 )−1,
where a0 is the present value of the scale factor. For simplicity we assume
a0 = 1.
One can check that the Raychaudhuri equation (2) can be rewritten to the
form analogous to the Newtonian equation

ä = −∂V
∂a , (4)

if we choose the following form of the potential function

V (a) = −1
6ρeffa

2, (5)

where ρeff satisfies the conservation condition (1).
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As the alternative method to obtain (5) is integration by parts eq. (4)
with the help of conservation condition (1).
The Raychaudhuri equation instead of the Friedmann first integral
assumes the following form

ρeff − 3 ȧ
2

a2 = 3 k
a2 , (6)

or
ȧ2 = −2V (7)

where
V = −ρeffa

2

6 + k
2 . (8)

Equation (7) is the form of the first integral of the Einstein equation with
Robertson-Walker symmetry called the Friedmann energy first integral.
Formally, curvature effects can be incorporated into the effective energy
density (ρk = − k

a2 ).
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The form of equation (4) suggests a possible interpretation of the
evolutional paths of cosmological models as the motion of a fictitious
particle of unit mass in a one dimensional potential parameterized by the
scale factor. Following this interpretation the Universe is accelerating in
the domain of configuration space {a : a ≥ 0} in which the potential is a
decreasing function of the scale factor. In the opposite case, if the
potential is an increasing function of a, the Universe is decelerating.

It is useful to represent the evolution of the system in terms of
dimensionless density parameters Ωi ≡ ρi/(3H2

0 ), where H0 is the present
value of the Hubble function. For this aims it is sufficient to introduce the
dimensionless scale factor x ≡ a/a0 which measures the value of a in the
units of the present value a0, and parameterize the cosmological time
following the rule t 7→ τ : dt|H0| = dτ . Note that this mapping is singular
at H0 = 0.
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Hence we obtain a 2-dimensional dynamical system describing the
evolution of cosmological models

dx
dτ = y , (9)

dy
dτ = −∂V

∂x , (10)

and y2/2 + V (x) = 0, 1 + z = x−1. Where

V (x) = −1
2
(

Ωeffx2 + Ωk,0
)
,

Ωeff = Ωm,0x−3 + ΩX ,0x−3(1+wX ),

for dust matter and quintessence matter satisfying the equation of state
pX = wXρX , wX = const.
The system (9)-(10) opens the possibility of taking advantage of the
dynamical systems methods to investigate all possible evolutional scenarios
for all possible initial conditions.
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Therefore, theoretical research in this area has obviously shifted from
finding and analyzing particular cosmological solution to investigating a
space of all admissible solutions and discovering how certain properties
(like, for example, acceleration, existence of singularities) are “distributed”
in this space.

The system (9)-(10) is a Hamiltonian one and adopting the Hamiltonian
formalism to the admissible motion analysis seems to be natural. The
analysis can then be performed in a manner similar to that of classical
mechanics. The cosmology determines uniquely the form of the potential
function V (x), which is the central point of the investigations.

Different potential functions for different propositions of solving the
acceleration problem are presented in Tables in two next slides.
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Table: The potential functions for different dark energy models.
model form of the potential function

Einstein-de Sitter model
Ωm,0 = 1, ΩΛ,0 = 0, Ωk,0 = 0 V (x) = − 1

2 Ωm,0x−1

ΛCDM model
Ωm,0 + ΩΛ,0 = 1 V (x) = − 1

2

(
Ωm,0x−1 + ΩΛ,0x2

)
FRW model filled with n
non-interacting multi-fluids V (x) = − 1

2

(
Ωm,0x−1 + Ωk,0 +

∑N
i=1

Ωi,0x−3(1+wi )
)

p = wρ with dust matter
FRW quintessence model with

dust and dark matter X V (x) = − 1
2

(
Ωm,0x−1 + Ωk,0 + ΩX,0x−1−3wX

)
wX < −1 phantom models
FRW model with generalized

Chaplygin gas V (x) = − 1
2

[
Ωm,0x−1 + Ωk,0 + ΩChapl,0

(
AS + 1−AS

x3(1+α)

) 1
1+α
]

p = − A
ρα

, A > 0
FRW models with dynamical

equation of state for dark energy V (x) = − 1
2

[
Ωm,0x−1 + Ωk,0 + ΩX,0x−1 exp

(∫ x

1
wX (a)

a da
)]

pX = wX (a)ρX and dust
FRW models with dynamical

equation of state for dark energy V (z) = − 1
2

[
Ωm,0(1 + z) + ΩX,0(1 + z)1+3(w0−w1)e3w1z + Ωk,0

]
coefficient equation of state

wX = w0 + w1z
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Table: The potential functions for modified FRW equations.
model form of the potential function

non-flat Cardassian models
filled by dust matter V (x) = − 1

2

(
Ωm,0x−1 + Ωk,0 + ΩCard,0xm+2

)
bouncing cosmological models

(H/H0)2 = Ωm,0x−m − Ωn,0x−n , V (x) = − 1
2

(
Ωm,0x−m+2 − Ωn,0x−n+2

)
n > m

Randall-Sundrum brane
models with dust on the brane V (x) = − 1

2

(
Ωm,0x−1 + Ωλ,0x−6 + Ωk,0 + Ωd,0x−4

)
and dark radiation

cosmology with spin and
dust (MAG cosmology) V (x) = − 1

2

(
Ωm,0x−1 + Ωs,0x−6 + Ωk,0

)
Dvali, Deffayet, Gabadadze

brane models (DDG) V (x) = − 1
2

(√
Ωm,0x−1 + Ωrc,0 +

√
Ωrc,0

)2

Sahni, Shtanov V (x) = − 1
2

(
Ωm,0x−1 + Ωσ,0 + 2Ωl,0

brane models ±2
√

Ωl,0
√

Ωm,0x−1 + Ωσ,0 + Ωl,0 + ΩΛb ,0
)

FRW cosmological models

of nonlinear gravity L ∝ Rn V (x) = − 1
2

[
2n

3−n Ωm,0x−1 + 4n(2−n)
(n−3)2

Ωr,0x−2
]

Ωnonl,0x
3(n−1)

n

with matter and radiation
ΛDGP model

screened cosmological V (x) = − 1
8 x2

[
− 1

r0H0
+

√(
2 + 1

r0H0

)2
+ 4Ωm,0(x−3 − 1)

]
constant model
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The key problem is to investigate the geometrical and topological
properties of the ensemble of simple models of the universe which we
define in the following way.

Definition
By the ensemble of simple models of the universe we understand the space
of all 2-dimensional systems of the Newtonian type

ẋ = y ,
ẏ = −∂V /∂x

with a suitably defined potential function of the scale factor, which
characterizes the physical model of the dark energy or the modified FRW
equation.
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Because of the Newtonian form of the dynamical system the character of
critical points is determined from the characteristic equation of the form

a2 + detA|x0=0, ∂V (a)
∂a |a0=0 = 0, (11)

where detA is determinant of linearization matrix calculated at the critical
points, i.e.

detA = ∂2V (a)
∂a2 |a0, ∂V (a)

∂a |a0=0. (12)

From equation (11) and (12) one can conclude that only admissible
critical points are the saddle type if ∂

2V (a)
∂a2 |a=a0 < 0 or centers type if

∂2V (a)
∂a2 |a=a0 > 0.
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If a shape of the potential function is known (from the knowledge of
effective energy density), then it is possible to calculate

cosmological functions in exact form

t =
∫ a da√

−2V (a)
, (13)

H(a) = ±

√
−2V (a)

a2 , (14)

a deceleration parameter, an effective barotropic factor

q = −aä
ȧ2 = 1

2
d ln(−V )
d ln a , (15)

weff(a(t)) = peff
ρeff

= −1
3

(d ln(−V )
d ln a + 1

)
, (16)
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a parameter of deviation from a de Sitter universe

h(t) ≡ −(q(t) + 1) = 1
2
d ln(−V )
d ln a − 1 (17)

(note that if V (a) = −Λa2
6 , h(t) = 0),

the effective matter density and pressure

ρeff = −6V (a)
a2 , (18)

peff = 2V (a)
a2

(d ln(−V )
d ln a + 1

)
(19)

and, finally, a Ricci scalar curvature for the FRW metric (??)

R = 6V (a)
a2

(d ln(−V )
d ln a + 2

)
. (20)
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From the formulas above one can observe that the most of them depend
on the quantity

Iν(a) = d ln(−V )
d ln a . (21)

This quantity measures elasticity of the potential function, i.e. indicates
how the potential V (a) changes if the scale factor a changes. For
example, for the de Sitter universe −V (a) ∝ a2, the rate of growth of the
potential is 2% as the rate of growth of the scale factor is 1%.
In the classification of the cosmological singularities by
Fernandez-Jambrina and Lazkoz the crucial role is played by the parameter
h(t). Note that a cosmological sense of this parameter is

h(t) = 1
2 Iν(a)− 1. (22)

In this approach the classification of singularities is based on generalized
power and asymptotic expansion of the barotropic index w in the equation
of state (or equivalently of the deceleration parameter q) in terms of the
time coordinate.
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Lyapunov stability

To prove the stability of the critical points of the system, the Lyapunov
function can be used.

Definition
Given a smooth dynamical system ẋ = f (x), x ∈ Rn, and a critical point
x0, a continuous function V : Rn → R in a neighbourhood U of x0 is a
Lyapunov function for the point if

1 V is differentiable in U \ {x0},
2 V (x) > V (x0) ∀x ∈ U \ {x0},
3 V̇ ≤ 0 ∀x ∈ U \ {x0}.

There is no formal way of constructing such a function. It can be done by
an educated guess, by trial and error.
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The existence of the Lyapunov function guarantees the asymptotic
stability of the system.

Theorem
Let x0 be a critical point of the system ẋ = f (x), where f : U → Rn and
U ⊂ Rn is a domain that contains x0. If V is a Lyapunov function, then

1 if V̇ = ∂V
∂x f is negative semi-definite, then x = x0 is a stable fixed

point,
2 if V̇ = ∂V

∂x f is negative definite, then x = x0 is an asymptotically
stable fixed point.

Furthermore, if ||x || → ∞ and V (x)→∞ for ∀x, then x0 is said to be
globally stable or globally asymptotically stable, respectively.
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Lyapunov function for FRW cosmological model

We assume a cosmological model with topology R×M3 whereM3 is
maximally symmetric 3-space; the metric of spacetime is Lorenzian
(−,+,+,+) and assumes the following form

ds2 = −dt2 = a(t)2
(

dr2

1− 1
4kr2

+ r2dθ2 + r2 sin2 θdφ2
)

(23)

where (t, r , θ, φ) are the pseudo-spherical coordinates (Wald, 1984),
a(t) > 0 is the scale factor (the function of the time coordinate), and
k = −1, 0, 1 is the spacial curvature. The 3-space of constant curvature is
spatially open for k = −1, spatially closed for k = 1 and spatially flat for
k = 0.
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The dynamics of metric tensor gµν : ds2 = gµνdxµdxν is determined from
the Einstein field equation

Rµν −
1
2Rgµν + Λgµν = Tµν (24)

where Rµν is the Ricci tensor, R = gµνRµν , (x1, x2, x3, x4) = (t, r , θ, φ), is
the Ricci scalar; we use natural units such that 8πG = c = 1.

Matter is assumed to be in the form of perfect fluid

Tµν = pgµν + (ρ+ p)uµuν (25)

where uµ = (−1, 0, 0, 0) denotes the four-velocity of an observer comoving
with the fluid. The functions p(t), ρ(t) are pressure and energy density of
the matter fluid, respectively.
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Tensor energy-momentum can be generalised for non-perfect, viscous fluid
(Weinberg, 1971), which for metric (23) assumes the form

T 0
0 = −ρ, T i

k =
{
p − 3ξ ȧ

a for i = k
0 for i 6= k

(26)

where i , k = {1, 2, 3}, ξ is the viscosity coefficient and H ≡ ȧ
a is the

Hubble parameter. Formally inclusion of viscous fluid is equivalent to
replace pressure p by p − 3ξ ȧ

a in the energy-momentum tensor.
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Such a cosmological model with the imperfect fluid (ξ = const) has been
considered since Heller et al. (1973) and Belinskii et al. (1975). The
Einstein field equation (2) for this model reduces to (Szydlowski,1984)

ρ = −Λ + k
a2 + 3 ȧ

2

a2 (27)

p = Λ− 2 äa −
ȧ2
a2 −

k
a2 (28)

where Λ is the cosmological constant parameter. The dependence of
pressure p on H = ȧ

a means that we considered viscous effects with the
viscosity coefficient ξ = −1

3
∂p
∂H .

Equations (27)-(28) can be rewritten to the form of the three-dimensional
autonomous dynamical system

Ḣ = −H2 − 1
6(ρ+ 3p) + Λ

3 (29)

ρ̇ = −3H(ρ+ p) (30)
ȧ = Ha (31)

where p = p(H, ρ) is a general form of the assumed equation of state.
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Let study the dynamical system (29)-(31) and the asymptotic stability of
its solution (H0 =

√
Λ
3 , ρ0 = 0) (future de Sitter solution).

Definition
A critical point x0 of the system ẋ = f(x), is a (Lyapunov) stable point if
for all neighbourhoods U of x0 there exists a neighbourhood U∗ of x0 such
that if x0 ∈ U∗ at t = t0 then φt(x0) ∈ U for all t > t0, where φt is the
flow of a dynamical system. If the critical point x0 is stable for all x ∈ U∗,
limt→∞ ||φt(x− x0|| = 0.

To determine the asymptotic stability of a solution of the dynamical
system considered we construct the Lyapunov function (Perko, 2001).
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Lyapunov function for FRW model

Let us consider some basic definitions of first integrals (Goriely, 2001).

Let M ⊂ Kn be an open subset in Kn where the field K is R or C. We
denote by X (M) and F(M) the algebra of vector fields and functions on
M, respectively. For simplicity, we assume that all objects are of the class
C∞. Let us consider a system of ordinary differential equations on M

dx
dt = XF (x) = F (x), x = (x1, . . . , xn) ∈ M ⊂ Kn (32)

where the vector field XF = X (M) is given by

XF =
n∑

i=1
f i (x) ∂

∂x i =
n∑

i=1
f i (x)∂i = f i (x)∂i (33)

where (f 1(x), . . . , f n(x)) are components of the vector field XF .
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We are looking for a solution or a class of solutions of system (32). This is
the motivation of the following definition.

Definition
We say that subset W ⊂ M is invariant with respect to system (32) if W
consists only of the system’s phase curves.

It seems that it is extremely difficult to check if a given set W is invariant
with respect to (32) because, in general, we do not know its solutions.
However, for checking the invariance, it is enough to know if, for all
x ∈W , the vector of phase velocity in this point is tangent to M, i.e. if
F (x) ∈ TxW for all x ∈W .
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The most important invariant sets are those allowing to reduce the
dimension of the system. For this purpose one invariant set is not enough,
we need a one parameter family Wc of (n − 1)-dimensional invariant sets
that gives a foliation of M. Such a foliation arises naturally when we know
a first integral.

Definition
Function G ∈ F(M) is called the first integral of system (32) if it is
constant on all solutions of the system. It is equivalent to the condition

XF (G)(x) = ∂iG(x)f i (x) = 0, for x ∈ M. (34)

It is well known that a level Wc = {x ∈ M|G(x) = c} of a first integral is
invariant, and c →Wc gives the foliation mentioned earlier.

When we cannot find a first integral of the system, it is sometimes
possible to find a function whose one level is invariant.
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Definition (Lyapunov function)
Let ẋ = f(x) with x ∈ X ⊂ Rn be a smooth autonomous system of
equations with fixed point x0. Let V : Rn → R be a continuous function in
a neighbourhood U of x0 , the V is called a Lyapunov function for the
point x0 if
1. V is differentiable in U \ {x0}
2. V (x) > V (x0)
3. V̇ ≤ 0 ∀x ∈ U \ {x0}.

Theorem (Lyapunov stability)
Let x0 be a critical point of the system ẋ = f(x), and let U be a domain
containing x0. If there exists a Lyapunov function V (x) for which V̇ ≤ 0,
then x0 is a stable fixed point. If there exists a Lyapunov function V (x) for
which V̇ < 0, then x0 is a asymptotically stable fixed point.
Furthermore, if ||x || → ∞ and V (x)→∞ for all x, then x0 is said to be
globally stable or globally asymptotically stable, respectively.

M. Szydłowski (UJ) Polynomial f (R) Palatini cosmology 36 / 102



Let us return to our system (29)-(31).

Theorem
The system (29)-(31) has first integral in the form

ρ− 3H2 + Λ = 3 k
a2 . (35)

Proof.
After differentiation of both sides of (10) with respect to time t and
substitution of right-hand sides of (29)-(31) we obtain the form (35) of
the first integral.
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In the three-dimensional phase space the first integral (10) defines surfaces
for different values of the parameter Λ. The dimension of the dynamical
system (29)-(31) can be lowered over one due to this first integral

Ḣ = −H2 − 1
6(ρ+ 3p) + Λ

3 (36)

ρ̇ = −3H(ρ+ p) (37)

where p = p(H, ρ), in generally.

For the de Sitter fixed point of (36)-(37), we have p = −ρ, from equation
(37). Then from equation (36) and using the first integral (10) we obtain
that k = 0. It means that fixed point is an intersection of the trajectory of
the flat model and the line ρ+ p(H, ρ) = 0 in the phase space (H, ρ).

Theorem

The de Sitter solution H0 = ±
√

Λ
3 is asymptotically stable for H0 > 0 and

asymptotically unstable for H0 < 0.
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Proof I
Let us propose the following Lyapunov function

V (H, ρ) ≡
{
ρ− 3H2 + Λ for k = 0, 1
−
(
ρ− 3H2 + Λ

)
for k = −1

(38)

which can be obtained from (35) by putting k = 0. The surface
{(H, ρ) : ρ− 3H2 + Λ = 0} divides the phase space into two domains
occupied by the trajectories with k = 1 and k = −1, respectively.
Let us consider the first case of non-negative Lyapunov function V (t) for
k = 0, 1 in (38).

V̇ (t) = ρ̇− 6HḢ = −3H(ρ+ p)− 6H
(
−H2 − 1

6(ρ+ 3p) + Λ
3

)
= −3H

{
ρ+ p + 2

[
−H2 − 1

6(ρ+ 3p) + Λ
3

]}
= −2H

(
ρ− 3H2 + Λ

)
= −2H 3k

a2 ≤ 0, if H > 0.

(39)
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Proof II

Analogously, we choose the second case of Lyapunov function V (t) for
k = −1 in (38) to have the function V (t) to be non-negative.
Finally, we obtain that at both critical points (H = ±

√
Λ
3 , ρ0 = 0) the

Lyapunov function (38) vanishes.
So, the conditions of the Lyapunov stability theorem are satisfied.
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We conclude that while the stable de Sitter solution is asymptotically
stable, the unstable de Sitter solution is unstable. This result was obtained
by using global methods of dynamics investigations instead of the standard
local stability analysis.

The choice of the Lyapunov function in the form of a first integral is
suitable for proving asymptotic stability of the stable de Sitter solution of
the model. This methodological result has also clear cosmological
interpretation: the stable de Sitter universe has no hair like a black hole.
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Dynamics of FRW cosmological model

Let us consider a homogeneous and isotropic Friedmann-Robertson-Walker
model with metric (23) and matter with energy density ρ and the
cosmological constant Λ. We choose two phase space variables: the
Hubble parameter H = x and energy density ρ = y and define the
dynamical system

ẋ = −x2 − 1
6y + Λ

3 (40)

ẏ = −3xy (41)

where the dot denotes derivative with respect to time t and Λ > 0 is the
cosmological constant. It is a special case of system (36)-(37).
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Let us apply the local stability analysis for system (40)-(41).

Remark

System (40)-(41) has three critical points: stable node (x = −
√

Λ
3 , y = 0),

unstable node (x =
√

Λ
3 , y = 0), and a saddle (x = 0, y = 2Λ).
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From the characteristic equation det(A− λI) = 0, where the linearization
matrix of system (40)-(41) is

A =
[
−2x0 1

6
−3y0 −3x0

]
(42)

we have that determinant, trace of linearization matrix A and discriminant
of the characteristic equation are detA = 6x20 − 1

2y0, trA = −5x0 and
∆ = x20 + 2y0, respectively, where (x0, y0) is a critical point.

Therefore,
1. the critical point (x0 = −

√
Λ
3 , y0 = 0) is an unstable node as

detA = 2Λ > 0, trA = 5
3
√

Λ > 0, and ∆ = Λ
3 > 0;

2. the critical point (x0 =
√

Λ
3 , y0 = 0) is a stable node as

detA = −Λ < 0, trA = −5
3
√

Λ < 0, and ∆ = Λ
3 > 0;

3. the critical point (x0 = 0, y0 = 2Λ) is a saddle as detA = 2Λ > 0,
trA = 0, and ∆ = 4Λ > 0.
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Figure: The phase portrait of system (94)-(95). There three critical points: point
A represents the unstable de Sitter universe, point B represents the stable de
Sitter universe, and point C represents the Einstein-de Sitter universe. The red
and blue trajectories lie on unstable and stable invariant manifolds, respectively.
It is assumed Λ is positive (for illustration Λ = 1).
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The Palatini approach

In the Palatini gravity action for f (R̂) gravity is introduced to be

S = Sg + Sm = 1
2

∫ √
−gf (R̂)d4x + Sm, (43)

where R̂ = gµνR̂µν(Γ) is the generalized Ricci scalar and R̂µν(Γ) is the
Ricci tensor of a torsionless connection Γ. Hereafter, we assume that
8πG = c = 1. The equation of motion obtained from the first order
Palatini formalism reduces to

f ′(R̂)R̂µν −
1
2 f (R̂)gµν = Tµν , (44)

∇̂α(
√
−gf ′(R̂)gµν) = 0, (45)

where Tµν = − 2√
−g

δLm
δgµν is matter energy momentum tensor, i.e. one

assumes that the matter minimally couples to the metric.
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As a consequence the energy momentum tensor is conserved, i.e.:
∇µTµν = 0. In eq. (45) ∇̂α means the covariant derivative calculated
with respect to Γ. In order to solve equation (45) it is convenient to
introduce a new metric

√
hhµν =

√
−gf ′(R̂)gµν (46)

for which the connection Γ = ΓLC (h) is a Levi-Civita connection. As a
consequence in dim M = 4 one gets

hµν = f ′(R̂)gµν , (47)

i.e. that both metrics are related by the conformal factor. For this reason
one should assume that the conformal factor f ′(R̂) 6= 0, so it has strictly
positive or negative values.
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Taking the trace of (44), we obtain additional so called structural equation

f ′(R̂)R̂ − 2f (R̂) = T . (48)

where T = gµνTµν . Because of cosmological applications we assume that
the metric g is the FRW metric

ds2 = −dt2 + a2(t)
[ 1
1− kr2 dr

2 + r2(dθ2 + sin2 θdφ2)
]
, (49)

where a(t) is the scale factor, k is a constant of spatial curvature
(k = 0,±1), t is the cosmological time. For simplicity of presentation we
consider the flat model (k = 0).
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As a source of gravity we assume perfect fluid with the energy-momentum
tensor

Tµ
ν = diag(−ρ, p, p, p), (50)

where p = wρ, w = const is a form of the equation of state (w = 0 for
dust and w = 1/3 for radiation). Formally, effects of the spatial curvature
can be also included to the model by introducing a curvature fluid
ρk = −k

2a
−2, with the barotropic factor w = −1

3 (pk = −1
3ρk). From the

conservation condition Tµ
ν;µ = 0 we obtain that ρ = ρ0a−3(1+w).

Therefore trace T reads as

T =
∑

i
ρi ,0(3wi − 1)a(t)−3(1+wi ). (51)

In what follows we consider visible and dark matter ρm in the form of dust
w = 0, dark energy ρΛ with w = −1 and radiation ρr with w = 1/3.
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Because a form of the function f (R̂) is unknown, one needs to probe it via
ensuing cosmological models. Here we choose the simplest modification of
the general relativity Lagrangian

f (R̂) = R̂ + γR̂2, (52)

induced by first three terms in the power series decomposition of an
arbitrary function f (R). In fact, since the terms R̂n have different physical
dimensions, i.e. [R̂n] 6= [R̂m] for n 6= m, one should take instead the
function R̂0f (R̂/R̂0) for constructing our Lagrangian, where R̂0 is a
constant and [R̂0] = [R̂]. In this case the power series expansion reads:
R̂0f (R̂/R̂0) = R̂0

∑
n=0 αn(R̂/R̂0)n =

∑
n=0 α̃nR̂n, where the coefficients

αn are dimensionless, while [α̃n] = [R̂]1−n are dimension full.
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On the other hand the Lagrangian (52) can be viewed as a simplest
deviation, by the quadratic Starobinsky term, from the Lagrangian R̂
which provides the standard cosmological model, a.k.a. the ΛCDM model.
A corresponding solution of the structural equation (48)

R̂ = −T ≡ 4ρΛ,0 + ρm,0a−3 (53)

is, in fact, exactly the same as for the ΛCDM model, i.e. with γ = 0.
However, the Friedmann equation of the ΛCDM model (with dust matter,
dark energy and radiation)

H2 = 1
3
(
ρr,0a−4 + ρm,0a−3 + ρΛ,0

)
(54)

is now hardly affected by the presence of the quadratic term.
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More exactly a counterpart of the above formula in the model under
consideration looks as follows

H2

H2
0

= b2(
b + d

2

)2 [Ωγ(Ωm,0a−3 + ΩΛ,0)2 (K − 3)(K + 1)
2b

+(Ωm,0a−3 + ΩΛ,0) + Ωr,0a−4
b + Ωk

]
, (55)

where

Ωk = − k
H2
0a2

, Ωr,0 = ρr,0
3H2

0
, Ωm,0 = ρm,0

3H2
0
, (56)

ΩΛ,0 = ρΛ,0
3H2

0
, K = 3ΩΛ,0

(Ωm,0a−3 + ΩΛ,0) , Ωγ = 3γH2
0 , (57)

b = f ′(R̂) = 1 + 2Ωγ(Ωm,0a−3 + 4ΩΛ,0), (58)

d = 1
H

db
dt = −2Ωγ(Ωm,0a−3 + ΩΛ,0)(3− K ) (59)

From the above one can check that the standard model (54) can be
reconstructed in the limit γ 7→ 0.
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Degenerated singularities – new type (VI) of singularity –
sewn singularities

Recently, due to discovery of an accelerated phase in the expansion of our
Universe, many theoretical possibilities for future singularity are seriously
considered. If we assume that the Universe expands following the
Friedmann equation, then this phase of expansion is driven by dark energy
– hypothetical fluid, which violates the strong energy condition. Many of
new types of singularities were classified by Nojiri et al.. Following their
classification the type of singularity depends on the singular behavior of
the cosmological quantities like: the scale factor a, the Hubble parameter
H, the pressure p and the energy density ρ.
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Type 0: ‘Big crunch’. In this type, the scale factor a is vanishing and
blow up of the Hubble parameter H, energy density ρ and pressure p.
Type I: ‘Big rip’. In this type, the scale factor a, energy density ρ and
pressure p are blown up.
Type II: ‘Sudden’. The scale factor a, energy density ρ and Hubble
parameter H are finite and Ḣ and the pressure p are divergent.
Type III: ‘Big freeze’. The scale factor a is finite and the Hubble
parameter H, energy density ρ and pressure p are blown up or
divergent.
Type IV. The scale factor a, Hubble parameter H, energy density ρ,
pressure p and Ḣ are finite but higher derivatives of the scale factor a
diverge.
Type V. The scale factor a is finite but the energy density ρ and
pressure p vanish.
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Following Królak, big rip and big crunch singularities are strong whereas
sudden, big freeze and type IV are weak singularities.
In the model under consideration the potential function or/and its
derivative can diverge at isolated points (value of the scale factor).
Therefore mentioned before classification has application only for a single
component of piece-wise smooth potential. In our model the dynamical
system describing evolution of a universe belongs to the class of a
piecewise smooth dynamical systems. As a consequence new types of
singularities at finite scale factor as can appear for which ∂V

∂a (as) does not
exist (is not determined). This implies that the classification of
singularities should be extended to the case of non-isolated singularities.
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Let us illustrate this idea on the example of freeze singularity in the
Starobinsky model with the Palatini formalism (previous section). Such a
singularity has a complex character and in analogy to the critical point we
called it degenerated. Formally it is composed of two types III singularities:
one in the future and another one in the past. If we considered the
evolution of the universe before this singularity we detect isolated
singularity of type III in the future. Conversely if we consider the evolution
after the singularity then going back in time we meet type III singularity in
the past. Finally, at the finite scale factor both singularities will meet
together. For description of behavior near the singularity one considers
t = t(a) relation. This relation has a horizontal inflection point and it is
natural to expand this relation in the Taylor series near this point at which
dt
da = 1

Ha is zero. For the freeze singularity, the scale factor remains
constant as, ρ and H blow up and ä is undefined. It this case, the
degenerated singularity of type III is called sewn (non-isolated) singularity.
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We, therefore, obtain

t − ts ' ±
1
2
d2t
da2 |a=asing(a − asing)2. (60)

Above formula combine two types of behavior near the freeze singularities
in the future

a − asing ∝ −(tsing − t)1/2 for t → tsing− (61)

and in the past

a − asing ∝ +(t − tsing)1/2 for t → tsing+ . (62)

In the model under consideration another type of sewn singularity also
appears. It is a composite singularity with two sudden singularities glued
at the bounce when a = amin. In this singularity the potential itself is a
continuous function while its first derivative has a discontinuity. Therefore,
the corresponding dynamical system represents a piece-wise smooth
dynamical system.
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Figure: Illustration of sewn freeze singularity, when the potential V (a) has a pole.

M. Szydłowski (UJ) Polynomial f (R) Palatini cosmology 60 / 102



VHaHtLL

-0.0004 -0.0002 0.0002 0.0004
t

-0.002

0.002

0.004

aHtL

Figure: Illustration of a sewn sudden singularity. The model with negative Ωγ has
a mirror symmetry with respect to the cosmological time. Note that the spike on
the diagram shows discontinuity of the function ∂V

∂a . Note the existence of a
bounce at t = 0.
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Singularities in the Starobinsky model in the Palatini
formalism
In our model, one finds two types of singularities, which are a consequence
of the Palatini formalism: the freeze and sudden singularity. The freeze
singularity appears when the multiplicative expression b

b+d/2 , in the
Friedmann equation (55), is equal the infinity. So we get a condition for
the freeze singularity: 2b + d = 0 which produces a pole in the potential
function. It appears that the sudden singularity appears in our model when
the multiplicative expression b

b+d/2 vanishes. This condition is equivalent
to the case b = 0.
The freeze singularity in our model is a solution of the algebraic equation

2b + d = 0 =⇒ f (K ,ΩΛ,0,Ωγ) = 0 (63)

or
−3K − K

3Ωγ(Ωm + ΩΛ,0)ΩΛ,0
+ 1 = 0, (64)

where K ∈ [0, 3).
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The solution of the above equation is

Kfreeze = 1
3 + 1

3Ωγ(Ωm+ΩΛ,0)ΩΛ,0

. (65)

From equation (65), we can find an expression for a value of the scale
factor for the freeze singularity

afreeze =

 1− ΩΛ,0

8ΩΛ,0 + 1
Ωγ(Ωm+ΩΛ,0)

 1
3

. (66)

The relation between afreeze and positive Ωγ is presented in Figure 4.
The sudden singularity appears when b = 0. This provides the following
algebraic equation

1 + 2Ωγ(Ωm,0a−3 + ΩΛ,0)(K + 1) = 0. (67)

The above equation can be rewritten as

1 + 2Ωγ(Ωm,0a−3 + 4ΩΛ,0) = 0. (68)
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From equation (68), we have the formula for the scale factor for a sudden
singularity

asudden =

− 2Ωm,0
1

Ωγ + 8ΩΛ,0

1/3

. (69)

which, in fact, becomes a (degenerate) critical point and a bounce at the
same time.

Let
V = −a2

2

(
Ωγ(Ωm,0a−3 + 4ΩΛ,0)2 (K−3)(K+1)

2b + (Ωm,0a−3 + 4ΩΛ,0) + Ωk
)
.

We can rewrite dynamical system (9)-(10) as

a′ = y , (70)

y ′ = −∂V (a)
∂a , (71)

where ′ ≡ d
dσ = b+ d

2
b

d
dτ is a new parametrization of time.

M. Szydłowski (UJ) Polynomial f (R) Palatini cosmology 64 / 102



We can treated the dynamical system (70)-(71) as a sewn dynamical
system. In this case, we divide the phase portrait into two parts: the first
part is for a < asing and the second part is for a > asing. Both parts are
glued along the singularity.
For a < asing, dynamical system (70)-(71) can be rewritten to the
corresponding form

a′ = y , (72)

y ′ = −∂V1(a)
∂a , (73)

where V1 = V (−η(a − as) + 1) and η(a) notes the Heaviside function.
For a > asing, in the analogous way, we get the following equations

a′ = y , (74)

y ′ = −∂V2(a)
∂a , (75)

where V2 = V η(a − as).
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Figure: Diagram of the relation between asing and positive Ωγ . Note that in the
limit Ωγ 7→ 0 the singularity overlaps with a big-bang singularity.
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Figure: Diagram of the relation between asing and negative Ωγ . Note that in the
limit Ωγ 7→ 0 the singularity overlaps with a big-bang singularity.
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Figure: The phase portrait of the system (70-71) for positive Ωγ . The scale factor
a is in the logarithmic scale.
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Figure: The phase portrait of the system (70-71) for negative Ωγ . The scale
factor a is in logarithmic scale.
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The Palatini approach in the Einstein frame
The action (43) is dynamically equivalent to the first order Palatini
gravitational action, provided that f ′′(R̂) 6= 0

S(gµν , Γλρσ, χ) = 1
2

∫
d4x
√
−g

(
f ′(χ)(R̂ − χ) + f (χ)

)
+ Sm(gµν , ψ), (76)

Introducing a scalar field Φ = f ′(χ) and taking into account the constraint
χ = R̂, one gets the action (76) in the following form

S(gµν , Γλρσ,Φ) = 1
2

∫
d4x
√
−g

(
ΦR̂ − U(Φ)

)
+ Sm(gµν , ψ), (77)

where the potential U(Φ) is defined by

Uf (Φ) ≡ U(Φ) = χ(Φ)Φ− f (χ(Φ)) (78)

with Φ = df (χ)
dχ and R̂ ≡ χ = dU(Φ)

dΦ .
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The Palatini variation of the action (77) gives rise to the following
equations of motion

Φ
(
R̂µν −

1
2gµνR̂

)
+ 1

2gµνU(Φ)− Tµν = 0, (79a)

∇̂λ(
√
−gΦgµν) = 0, (79b)

R̂ − U ′(Φ) = 0. (79c)

Equation (79b) implies that the connection Γ̂ is a metric connection for a
new metric ḡµν = Φgµν ; thus R̂µν = R̄µν , R̄ = ḡµνR̄µν = Φ−1R̂ and
ḡµνR̄ = gµνR̂. The g-trace of (79a) produces a new structural equation

2U(Φ)− U ′(Φ)Φ = T . (80)
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Now equations (79a) and (79c) take the following form

R̄µν −
1
2 ḡµνR̄ = T̄µν −

1
2 ḡµνŪ(Φ), (81)

ΦR̄ − (Φ2 Ū(Φ))′ = 0, (82)

where we introduce Ū(φ) = U(φ)/Φ2, T̄µν = Φ−1Tµν and the structural
equation can be replaced by

Φ Ū ′(Φ) + T̄ = 0 . (83)

In this case, the action for the metric ḡµν and scalar field Φ is given by

S(ḡµν ,Φ) = 1
2

∫
d4x

√
−ḡ

(
R̄ − Ū(Φ)

)
+ Sm(Φ−1ḡµν , ψ), (84)

where we have to take into account a non-minimal coupling between Φ
and ḡµν

T̄µν = − 2√
−ḡ

δ

δḡµν
Sm = (ρ̄+ p̄)ūµūν + p̄ḡµν = Φ−3Tµν , (85)

ūµ = Φ− 1
2 uµ, ρ̄ = Φ−2ρ, p̄ = Φ−2p, T̄µν = Φ−1Tµν , T̄ = Φ−2T .
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In the FRW case, one gets the metric ḡµν in the following form

ds̄2 = −dt̄2 + ā2(t)
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (86)

where dt̄ = Φ(t) 1
2 dt and new scale factor ā(t̄) = Φ(t̄) 1

2 a(t̄). Ensuing
cosmological equations (in the case of the barotropic matter) are given by

3H̄2 = ρ̄Φ + ρ̄m, 6
¨̄a
ā = 2ρ̄Φ − ρ̄m(1 + 3w) (87)

where
ρ̄Φ = 1

2 Ū(Φ), ρ̄m = ρ0ā−3(1+w)Φ
1
2 (3w−1) (88)

and w = p̄m/ρ̄m = pm/ρm. In this case, the conservation equations has
the following form

˙̄ρm + 3H̄ ρ̄m(1 + w) = − ˙̄ρΦ. (89)
Let us consider the Starobinsky–Palatini model in the above framework.
The potential Ū is described by the following formula

Ū(Φ) = 2ρ̄Φ(Φ) =
( 1
4γ + 2λ

) 1
Φ2 −

1
2γ

1
Φ + 1

4γ . (90)
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Cosmological equation for the Starobinsky–Palatini model in the Einstein
frame can be rewritten to the form of the dynamical system in the
variables H̄(t̄) and R̂(t̄)

˙̄H(t̄) = 1
6 (1 + 2γR̂(t̄))2(

6Λ− 6H̄(t̄)2(1 + 2γR̂(t̄))2 + R̂(t̄)(−1 + 24γΛ + γ(1 + 24γΛ)R̂(t̄))
)
,

(91)

˙̂R(t̄) = − 3
(−1 + γR̂(t̄))

H̄(t̄)(1 + 2γR̂(t̄))(
4Λ + R̂(t̄)

(
−1 + 16γΛ + 16γ2ΛR̂(t̄)

))
, (92)

where a dot means the differentiation with respect to the time t̄.
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Equations (91)–(92) have the following the first integral in the following
form:

H̄(t̄)2 + Λ− R̂(t̄)(2 + γR̂(t̄))
6(1 + 2γR̂(t̄))2

+

k
e
−

arctan
(
−1+16γΛ+32γ2ΛR̂(t̄)√

−1+32γΛ

)
3
√
−1+32γΛ

√
4Λ + R̂(t̄)

(
−1 + 16γΛ + 16γ2ΛR̂(t̄)

)
C0(1 + 2γR̂(t̄))

= 0,

(93)

where C0 = a20e
−

arctan
(
−1+16γΛ+32γ2ΛR̂(t̄0)√

−1+32γΛ

)
3
√
−1+32γΛ

√
4Λ+R̂(t̄0)(−1+16γΛ+16γ2ΛR̂(t̄0))

(1+2γR̂(t̄0)) .
Here, a0 is the present value of the scale factor.
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Figure: The phase portrait of system (91)-(92).
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For comparison of the dynamical system in the both frames, we obtain
dynamical system for the Starobinsky–Palatini model in the variables H(t)
and R̂(t)

Ḣ(t) = −1
6

[
6
(
2Λ + H(t)2

)
+ R̂(t) + 18(1 + 8γΛ)

(
Λ− H(t)2

)
−1− 12γΛ + γR̂(t)

−18(1 + 8γΛ)H(t)2

1 + 2γR̂(t)

]
, (94)

˙̂R(t) = −3H(t)(R̂(t)− 4Λ), (95)

where a dot means the differentiation with respect to time t.
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Equations (94)–(95) have the following the first integral in the following
form:

H(t)2−
(1 + 2γR̂(t))2

(
−3Λ + R̂(t)− k(−4Λ+R̂(t))2/3

C0
+ γ(12Λ−3R̂(t))R̂(t)

2(1+2γR̂(t))

)
(1 + 2γR̂(t)− 3γ(−4Λ + R̂(t)))2

= 0, (96)

where C0 = a20(−4Λ + R̂(t0))2/3. Here, a0 is the present value of the scale
factor.

M. Szydłowski (UJ) Polynomial f (R) Palatini cosmology 78 / 102



2 3 4 5 6 7

R
`

-6

-4

-2

0

2

4

6

H

1

3

2 4

k=-1

k=-1

k=+1

k=+1
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Summary: the cosmology as science about the Universe I

1 Methods of dynamical systems are very useful in cosmology as they
allow to investigate all solutions for all possible initial conditions. The
Universe is an unique entity with unknown initial conditions.

2 In the geometric language of phase space the “distribution” of models
in the ensemble can be described. Are they generic (typical in any
sense) or exceptional (fine tuned)? Problem is mathematically
interesting as it requires a definition of probabilistic measure in the
ensemble. Initial conditions for the Universe were special or typical?

3 The stability was studied by using global methods of dynamics
investigations instead of the standard local stability analysis. The
choice of the Lyapunov function in the form of a first integral is
suitable for proving asymptotic stability of the stable de Sitter
solution of the model. This methodological result has also clear
cosmological interpretation: the stable de Sitter universe has no hair
like a black hole.
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Summary: the cosmology as science about the Universe II

4 In the context of the Starobinsky model in the Palatini formalism we
found a new type of double singularity beyond the well-known
classification of isolated singularities.

5 The phase portrait for the Starobinsky model in the Palatini
formalism with a positive value of γ is equivalent to the phase
portrait of the ΛCDM model. There is only a quantitative difference
related with the presence of the non-isolated freeze singularity.

6 For the Starobinsky–Palatini model in the Einstein frame for the
positive γ parameter, the sewn freeze singularity are replaced by the
generalized sudden singularity. In consequence this model is not
equivalent to the phase portrait of the ΛCDM model.
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Appendix

86 Structural stability of dynamical systems
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Structural stability

The idea of structural stability, emerged in the 1930’s with the writings of
Andronov, Leontovich and Pontryagin in Russia (they called it “roughly
systems”). This idea is based on the observation that actual state of the
system can never be specified exactly.

Among all dynamicists there is a shared prejudice that
1 there is a class of phase portraits that are far simpler than arbitrary

ones which can explain why a considerable portion of the
mathematical physics has been dominated by the search for the
generic properties. The exceptional cases should not arise very often
in application;

2 the physically realistic models of the world should posses some kind of
structural stability because to have many dramatically different
models all agreeing with observations would be fatal for the empirical
methods of science.
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The problem is how to define
1 a space of states and their equivalence,
2 a perturbation of the system.

The dynamical system is called structurally stable if all its δ-perturbations
(sufficiently small) have an epsilon equivalent phase portrait. Therefore for
the conception of structural stability we consider a δ perturbation of the
vector field determined by right hand sides of the system which is small
(measured by delta). We also need a conception of epsilon equivalence.
This has the form of topological equivalence – a homeomorphism of the
state space preserving the arrow of time on each trajectory.
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Generic and non-generic phase portrait in ensemble

There is a simple way to introduce the metric in the space of all dynamical
systems on the compactified plane. If f ∈ C1(M) whereM is an open
subset of Rn, then the C1 norm of f can be introduced in a standard way

||f ||1 = sup
x∈E
|f (x)|+ sup

x∈E
‖Df (x)‖, (97)

where | . . . | and ‖ . . . ‖ denotes the Euclidean norm in Rn and the usual
norm of the Jacobi matrix Df (x), respectively. It is well known that the
set of vectors field bounded in the C1 norm forms a Banach space.
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It is natural to use the defined norm to measure the distance between any
two dynamical systems of the multiverse. If we consider some compact
subset K ofM then the C1 norm of vector field f on K can be defined as

‖f ‖1 = max
x∈K
|f (x)|+ max

x∈K
‖Df (x)‖ <∞. (98)

Let E = Rn then the ε-perturbation of f is the function g ∈ C1(M) form
which ‖f − g‖ < ε. The introduced language is suitable to reformulate the
idea of structural stability given by Andronov and Pontryagin. The
intuition is that f should be structurally stable vector field if for any vector
field g near f , the vector fields f and g are topologically equivalent. A
vector field f ∈ C1(M) is said to be structurally stable if there is an ε > 0
such that for all g ∈ C1(M) with ‖f − g‖1 < ε, f and g are topologically
equivalent on open subsets of Rn calledM. To show that system is not
structurally stable on Rn it is sufficient to show that f is not structurally
stable on some compact K with nonempty interior.
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The Sobolev metric introduced in the multiverse of dark energy models
can be used to measure how far different cosmological model with dark
energy are to the canonical ΛCDM model. For this aim let us consider a
different dark energy models with dust matter and dark energy. We also
for simplicity of presentation assume for all models have the same value of
Ωm,0 parameters which can be obtained, for example, from independent
extragalactic measurements. Then, the distance between any two
cosmological model, say model ’1’ and model ’2’ is

d(1, 2) = max
x∈C

[|V1x − V2x |, |V1xx − V2xx |] (99)

where we assumed the same value of the parameter H0 measured at the
present epoch for all cosmological models which we compare, V1 and V2
and their derivatives are only the parts of the potentials without the
matter term.
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Structural stability of planar dynamical systems

For planar dynamical systems (as is the case for the models under
consideration) we have Peixoto’s theorem.

Theorem
Structurally stable dynamical systems form open and dense subsets in the
space of all dynamical systems defined on the compact manifold.

This theorem is a basic characterization of the structurally stable
dynamical systems on the plane which offers the possibility of an exact
definition of generic (typical) and non-generic (exceptional) cases
(properties) employing the notion of structural stability. Unfortunately,
there are no counterparts of this theorem in more dimensional cases when
structurally unstable systems can also form open and dense subsets. For
our aims it is important that Peixoto’s theorem can characterize generic
cosmological models in terms of the potential function.
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The analysis of full dynamical behaviour of trajectories requires the study
of the behaviour of trajectories at infinity, e.g. by means of the Poincaré
sphere construction. We project the trajectories from centre of the unit
sphere S2 = {(X ,Y ,Z ) ∈ R3 : X 2 + Y 2 + Z 2 = 1} onto the (x , y) plane
tangent to S2 at either the north or south pole. Due to this central
projection the critical points at infinity are spread out along the equator.
Therefore if we project the upper hemisphere S2 onto the (x , y) plane of
dynamical system of the Newtonian type, then

x = X
Z , y = Y

Z , (100)

or

X = x√
1 + x2 +

(
∂V
∂x

)2 , Y = y√
1 + x2 +

(
∂V
∂x

)2 ,
Z = 1√

1 + x2 +
(
∂V
∂x

)2 . (101)
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While there is no counterpart of Peixoto’s theorem in higher dimensions, it
is easy to test whether a planar polynomial system has a structurally stable
global phase portrait. In particular, a vector field on the Poincaré sphere
will be structurally unstable if there is a non-hyperbolic critical point at
infinity or if there is a trajectory connecting saddles on the equator of the
Poincaré sphere S2. In opposite case if additionally the number of critical
points and limit cycles is finite, f is structurally stable on S2. Following
Peixoto’s theorem the structural stability is a generic property of the C1

vector fields on a compact two-dimensional differentiable manifoldM.

Let us introduce the following definition

Definition
If the set of all vector fields f ∈ C r (M) (r ≥ 1) having a certain property
contains an open dense subset of C r (M), then the property is called
generic.
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Generic and non-generic phase portrait on Poincaré sphere

If we consider some subclass of dark energy models described by the vector
field [y ,−∂V /∂x ]T on the Poincaré sphere, then the right hand sides of
the corresponding dynamical systems are of the polynomial form of degree
m.

Theorem
Then f is structurally stable if
(i) the number of critical points and limit cycles is finite and each critical

point is hyperbolic . therefore a saddle point in finite domain,
(ii) there are no trajectories connecting saddle points.

It is important that if the polynomial vector field f is structurally stable on
the Poincaré sphere S2 then the corresponding polynomial vector field
[y ,−∂V /∂x ]T is structurally stable on R2.
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Following Peixoto’s theorem the structural stability is a generic property of
C1 vector fields on a compact two-dimensional differentiable manifoldM.
If a vector field f ∈ C1(M) is not structurally stable it belongs to the
bifurcation set C1(M). For such systems their global phase portrait
changes as vector field passes through a point in the bifurcation set.

Therefore, in the class of dynamical systems on the compact manifold, the
structurally stable systems are typical (generic) whereas structurally
unstable are rather exceptional. In science modeling, both types of systems
are used. While the structurally stable models describe “stable
configuration” structurally unstable model can describe a fragile physical
situation which requires fine tuning.
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Structural stability of FRW cosmological models

From the physical point of view it is interesting to known whether a
certain subset V of C r (M) (representing the class of cosmological
accelerating models in our case) contains a dense subset because it means
that this property (acceleration) is typical in V .
It is not difficult to establish some simple relation between the geometry of
the potential function and localization of the critical points and its
character for the case of dynamical systems of the Newtonian type:
1. The critical points of the systems under consideration ẋ = y ,

y = −∂V
∂x lie always on the x axis, i.e. they represent static universes

y0 = 0, x = x0;
2. The point (x0, 0) is a critical point of the Newtonian system iff it is a

turning point of the potential function V (x), i.e. V (x) = E (E is the
total energy of the system E = y2/2 + V (x); E = 0 for the case of
flat models and E = −k/2 in general);
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3. If (x0, 0) is a strict local maximum of V (x), it is a saddle type critical
point;

4. If (x0, 0) is a strict local minimum of the analytic function V (x), it is
a centre;

5. If (x0, 0) is a horizontal inflection point of the V (x), it is a cusp;
6. The phase portraits of the Newtonian type systems have reflectional

symmetry with respect to the y axis, i.e. x → x , y → −y .

All these properties are simple consequences of the Hartman-Grobman
theorem

Theorem
Near the non-degenerate (hyperbolic) critical points the original dynamical
system is equivalent to its linear part.
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The character of a critical point is determined by the eigenvalues of the
linearization matrix,

A =
[

0 1
−∂2V
∂x2 0

]
(x0,0)

from the characteristic equation λ2 + detA = 0.
For a maximum of potential function we obtain a saddle with real λ1, λ2
of opposite signs, and for a minimum at the critical point we have a centre
with λ1,2 purely imaginary of mutually conjugate. Only if the potential
function admits a local maximum at the critical point we have a
structurally stable global phase portrait. Because V ≤ 0 and
∂V /∂a = 1

6(ρ(a) + 3p(a))a the Universe is decelerating if the strong
energy condition is satisfied and accelerating if the strong energy condition
is violated. Hence, among all simple scenarios, the one in which
deceleration is followed by acceleration is the only structurally stable one.
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Figure: The model of an accelerating universe given in terms of the potential
function and its phase portrait. The domain of acceleration is represented by
shaded area. It is equivalent to the ΛCDM model scenario.
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Figure: The model of an accelerating universe given in terms of the potential
function and its phase portrait. The existence of two maxima induces structural
instability of the system. It is the non-generic phase portrait for the universe
accelerating in two domains.
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Figure: The model of an accelerating universe given in terms of the potential
function and its phase portrait. The universe is accelerating for all trajectories.
There is no critical point in the finite domain. While this system is structurally
stable there is no matter dominating phase.
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Figure: Bouncing models with the cosmological constant. There are three
characteristic types of evolution: I – inflectional, O – oscillating, B – bouncing.
The model is structurally unstable because of the presence of a non-hyperbolic
critical point (center).
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Figure: Bouncing models H2/H2
0 = Ωm,0x−m − Ωn,0x−n, n > m, m, n = const.

They are closed for oscillating (O) models appearing for positive curvature, or
open, representing bouncing flat and open cosmologies with a single bounce
phase. It is structurally unstable.
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We can see that there are two types of scenarios of cosmological models
with matter dominated and dark energy dominated phases.

1 The ΛCDM scenario, where the early stage of evolution is dominated
by both baryonic and dark matter, and late stages are described by
the cosmological constant effects.

2 The bounce instead initial singularity squeezed into a cosmological
scenario; one can distinguish cosmological models early bouncing
phase of evolution (caused by the quantum bounce) from the classical
bouncing models at which the expansion phase follows the
contraction phase. In this paper by bouncing models we understand
the models in the former sense (the modern one).
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One can imagine different evolutional scenarios in terms of the potential
function. Because of the existence of a bouncing phase which always gives
rise to the presence of a non-hyperbolic critical point on the phase portrait
one can conclude

the bounce is not a generic property of the evolutional scenario,
structural stability prefers the simplest evolutional scenario in which
the deceleration epoch is followed by the acceleration phase.

The dynamical systems with the property of such switching rate of
expansion, following the single-well potential are generic in the class of all
dynamical systems on the plane.
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