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Motivation

Large cosmological observational findings:

High orbital speeds of galaxies in clusters. (F.Zwicky, 1933)

High orbital speeds of stars in spiral galaxies. (Vera Rubin, at
the end of 1960es)

Accelerated expansion of the Universe. (1998)

Big Bang

Another cosmological problem is related to the Big Bang
singularity. Namely, under rather general conditions, general
relativity yields cosmological solutions with zero size of the
universe at its beginning, what means an infinite matter density.

Note that when physical theory contains singularity, it is not
valid in the vicinity of singularity and must be appropriately
modified.
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Problem solving approaches

There are two problem solving approaches:

Dark matter and energy

Modification of Einstein theory of gravity

Rµν − 1
2Rgµν = 8πGTµν − Λgµν , c = 1

where Tµν is stress-energy tensor, gµν are the elements of the metric
tensor, Rµν is Ricci tensor and R is scalar curvature of metric.
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Dark matter and energy

If Einstein theory of gravity can be applied to the whole Universe
then the Universe contains about 5% of ordinary matter, 27% of
dark matter and 68% of dark energy.

It means that 95% of total matter, or energy, represents dark
side of the Universe, which nature is unknown.

Dark matter is responsible for orbital speeds in galaxies, and dark
energy is responsible for accelerated expansion of the Universe.
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Modification of Einstein theory of gravity

Motivation for modification of Einstein theory of gravity

The validity of General Relativity on cosmological scale is not
confirmed.

Dark matter and dark energy are not yet detected in the
laboratory experiments.
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Approaches to modification of Einstein theory of
gravity

There are different approaches to modification of Einstein theory of
gravity.

Einstein General Theory of Relativity

From action S =

∫ (
R

16πG
− Lm − 2Λ

)√
−gd4x using variational

methods we get field equations

Equations of Motion

Rµν − 1
2Rgµν = 8πGTµν − Λgµν , c = 1

where Tµν is stress-energy tensor, gµν are the elements of the metric
tensor, Rµν is Ricci tensor and R is scalar curvature of metric.
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Modified Gravity: Kinds of modification

First modifications: Einstein 1917, Weyl 1919, Edington 1923, ...

Einstein-Hilbert action

S =

∫
d4x

√
−g

16πG
R +

∫
d4x
√
−g L(matter)

modification

R → f (R,Λ,Rµν ,R
α
µβν ,�, ...), � = ∇µ∇µ = 1√

−g ∂µ
√
−ggµν∂ν

Gauss-Bonnet invariant

G = R2 − 4RµνRµν + RαβµνRαβµν
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Modified Gravity: Kinds of modification

f(R) modified gravity

S =

∫
d4x

√
−g

16πG
f (R) +

∫
d4x
√
−g L(matter)

Gauss-Bonnet modified gravity

S =

∫
d4x

√
−g

16πG
(R + αG) +

∫
d4x
√
−g L(matter)

nonlocal modified gravity

S =

∫
d4x

√
−g

16πG
f (R,�) +

∫
d4x
√
−g L(matter)
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Nonlocal Modified Gravity

Under nonlocal modification of gravity we understand replacement of
the scalar curvature R in the Einstein-Hilbert action by a suitable
function F (R,�), where � = ∇µ∇µ is dAlembert operator and ∇µ
denotes the covariant derivative.

Let M be a four-dimensional pseudo-Riemannian manifold with
metric (gµν) of signature (1, 3). We consider a class of nonlocal
gravity models without matter, given by the following action

S =
1

16πG

∫
M

(R − 2Λ +
√
R − 2ΛF(�)

√
R − 2Λ )

√
−g d4x ,

where F(�) =
∞∑
n=1

fn �
n and Λ is cosmological constant.
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Nonlocal Modified Gravity

The previous action can be rewritten in the form

S =
1

16πG

∫
M

√
R − 2ΛF (�)

√
R − 2Λ

√
−g d4x ,

where F (�) = 1 + F(�) = 1 +
∞∑
n=1

fn �
n.
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FRW metric

We use Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 + a2(t)
(

dr2

1−kr2 + r2dθ2 + r2 sin2 θdφ2
)

, k ∈ {−1, 0, 1}.

R =
6(a(t)ä(t)+ȧ(t)2+k)

a(t)2

In case of FRW metric the d’Alembert operator is

�R = −R̈ − 3HṘ, H = ȧ
a
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FRW metric

We use Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 + a2(t)
(

dr2

1−kr2 + r2dθ2 + r2 sin2 θdφ2
)

, k ∈ {−1, 0, 1}.

R =
6(a(t)ä(t)+ȧ(t)2+k)

a(t)2

In case of FRW metric the d’Alembert operator is

�R = −R̈ − 3HṘ, H = ȧ
a
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Equations of Motion

By variation of action S with respect to metric gµν we obtain

Gµν + Λgµν + (Rµν −∇µ∇ν + gµν�)V−1F(�)V

+
+∞∑
n=1

fn
2

n−1∑
l=0

(
gµν(gαβ∂α�

lV ∂β�
n−1−lV + �lV�n−lV )

− 2∂µ�
lV ∂ν�

n−l−1V
)
− 1

2
gµνVF(�)V = 0,

where V =
√
R − 2Λ.
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The trace and 00-component of EOM

Suppose that manifold M has the FRW metric. Then we have two
linearly independent equations (trace and 00-equation):

4Λ− R − 2VF(�)V + (R + 3�)V−1F(�)V

+
+∞∑
n=1

fn

n−1∑
l=0

(∂µ�
lV ∂µ�n−1−lV + 2�lV�n−lV ) = 0,

G00 + Λg00 + (R00 −∇0∇0 + g00�)V−1F(�)V

+
+∞∑
n=1

fn
2

n−1∑
l=0

(
g00(gαβ∂α�

lV ∂β�
n−1−lV + �lV�n−lV )

− 2∂0�
lV ∂0�

n−l−1V
)
− 1

2
g00VF(�)V = 0,

where R00 = −3
ä

a
, G00 = 3

ȧ2 + k

a2
.
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Ansatz

In order to solve equations of motion we use the following ansatz:

�
√
R − 2Λ = p

√
R − 2Λ,

where p is a constant.

The first consequences of ansatz are:

�n
√
R − 2Λ = pn

√
R − 2Λ, n ≥ 0

F(�)
√
R − 2Λ = F(p)

√
R − 2Λ.
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Ansatz

In order to solve equations of motion we use the following ansatz:

�
√
R − 2Λ = p
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where p is a constant.

The first consequences of ansatz are:
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√
R − 2Λ = pn

√
R − 2Λ, n ≥ 0
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Cosmological solution a(t) = Aeγt
2

, Λ = 6γ,
γ 6= 0, k = 0.

We consider scale factor of the form

a(t) = Aeγt
2

.

The following anzats

�
√
R − 12γ = −6γ

√
R − 12γ

is satisfied.

Direct calculation shows that

R(t) = 12γ(1 + 4γt2),

Ṙ = 96γ2t,

�
√
R − 12γ = −24

√
3γ|γ||t|,

�n
√
R − 12γ = (−6γ)n

√
R − 12γ, n ≥ 0,

F(�)
√
R − 12γ = F(−6γ)

√
R − 12γ.
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Cosmological solution a(t) = Aeγt
2

, Λ = 6γ,
γ 6= 0, k = 0.

We consider scale factor of the form

a(t) = Aeγt
2

.

The following anzats

�
√
R − 12γ = −6γ

√
R − 12γ

is satisfied. Direct calculation shows that

R(t) = 12γ(1 + 4γt2),

Ṙ = 96γ2t,

�
√
R − 12γ = −24

√
3γ|γ||t|,

�n
√
R − 12γ = (−6γ)n

√
R − 12γ, n ≥ 0,

F(�)
√
R − 12γ = F(−6γ)

√
R − 12γ.
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Cosmological solution a(t) = Aeγt
2

, Λ = 6γ,
γ 6= 0, k = 0.

Substituting a(t) into trace equation we get the following system of
equations:

Λ− 3γ + 3γF(−6γ)− 12γ2F ′(−6γ) = 0,

−γ − γF(−6γ)− 12γ2F ′(−6γ) = 0.

In order to satisfy the last system of equations we have:

F(−6γ) = −1,

F ′(−6γ) = 0.
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Cosmological solution a(t) = Aeγt
2

, Λ = 6γ,
γ 6= 0, k = 0.

We have:

R00 = −12γ2t2 − 6γ,

H(t) = 2γt,

G00 = 12γ2t2.

When we substitute these conditions into 00 equation we obtain

Λ = 6γ.
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Cosmological solution a(t) = Aeγt
2

, Λ = 6γ,
γ 6= 0, k = 0.

We conclude that the equations of motion are satisfied if and only if

Λ = 6γ, γ 6= 0,

F(−6γ) = −1,

F ′(−6γ) = 0.
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Cosmological solution a(t) = A t2/3eγt
2

, Λ = 14γ,
γ 6= 0, k = 0.

We consider scale factor of the form

a(t) = A t2/3eγt
2

.

The following anzats

�
√
R − 28γ = −6γ

√
R − 28γ

is satisfied.

Direct calculation shows that

R(t) = 44γ +
4

3
t−2 + 48γ2t2,

Ṙ = 96γ2t − 8

3
t−3,

�n
√
R − 28γ = (−6γ)n

√
R − 28γ, n ≥ 0,

F(�)
√
R − 28γ = F(−6γ)

√
R − 28γ.
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Cosmological solution a(t) = A t2/3eγt
2

, Λ = 14γ,
γ 6= 0, k = 0.

We consider scale factor of the form

a(t) = A t2/3eγt
2

.

The following anzats

�
√
R − 28γ = −6γ

√
R − 28γ

is satisfied. Direct calculation shows that

R(t) = 44γ +
4

3
t−2 + 48γ2t2,

Ṙ = 96γ2t − 8

3
t−3,

�n
√
R − 28γ = (−6γ)n

√
R − 28γ, n ≥ 0,

F(�)
√
R − 28γ = F(−6γ)

√
R − 28γ.
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Cosmological solution a(t) = A t2/3eγt
2

, Λ = 14γ,
γ 6= 0, k = 0.

Substituting a(t) into trace equation we get the following system of
equations:

F ′(−6γ) = 0,

Λ− 11γ + 3γF(−6γ) = 0,

F(−6γ) = −1,

−γ2 − γ2F(−6γ) = 0.
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Cosmological solution a(t) = A t2/3eγt
2

, Λ = 14γ,
γ 6= 0, k = 0.

We have:

R00 =
2

3
t−2 − 12γ2t2 − 14γ,

H(t) =
2

3
t−1 + 2γt,

G00 =
4

3
t−2 + 12γ2t2 + 8γ.

Substituting this into the 00 component of EOM we obtain the
following system of equations:

F ′(−6γ) = 0,

8γ − Λ− 6γF(−6γ) = 0,

F(−6γ) = −1,

γ2 + γ2F(−6γ) = 0.
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Cosmological solution a(t) = A t2/3eγt
2

, Λ = 14γ,
γ 6= 0, k = 0.

The last two systems of equations are satisfied if and only if

F(−6γ) = −1,

F ′(−6γ) = 0,

Λ = 14γ, γ 6= 0.
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Cosmological solution a(t) = Aeλt , Λ = 6λ2,
λ 6= 0, k = ±1

We consider scale factor of the form

a(t) = A eλt .

The following anzats

�
√
R − 2Λ = 2λ2

√
R − 2Λ

is satisfied.

Direct calculation shows that

R(t) =
6k

A2
e−2λt + 12λ2,

�n
√
R − 2Λ = (2λ2)n

√
R − 2Λ, n ≥ 0,

F(�)
√
R − 2Λ = F(2λ2)

√
R − 2Λ.
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Cosmological solution a(t) = Aeλt , Λ = 6λ2,
λ 6= 0, k = ±1

We consider scale factor of the form

a(t) = A eλt .

The following anzats

�
√
R − 2Λ = 2λ2

√
R − 2Λ

is satisfied. Direct calculation shows that

R(t) =
6k

A2
e−2λt + 12λ2,

�n
√
R − 2Λ = (2λ2)n

√
R − 2Λ, n ≥ 0,

F(�)
√
R − 2Λ = F(2λ2)

√
R − 2Λ.
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Cosmological solution a(t) = Aeλt , Λ = 6λ2,
λ 6= 0, k = ±1

The trace and 00 equations become

4Λ− R + (4Λ− R)F(2λ2)− Ṙ2

4(R − 2Λ)
F ′(2λ2)

+ 4(R − 2Λ)λ2F ′(2λ2) = 0,

G00 − Λ + R00F(2λ2) +
1

2
(R − 2Λ)F(2λ2)

− Ṙ2

8(R − 2Λ)
F ′(2λ2)− λ2(R − 2Λ)F ′(2λ2) = 0.
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Cosmological solution a(t) = Aeλt , Λ = 6λ2,
λ 6= 0, k = ±1

The last two equations are satisfied if and only if

Λ = 6λ2, λ 6= 0

F(2λ2) = −1,

F ′(2λ2) = 0.
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Cosmological solutions with constant scalar
curvature

We want to find solution of equations of motion for cosmological
scale factor a(t) when R = R0 = constant. It is useful to start from
the differential equation

6
( ä
a

+
( ȧ
a

)2
+

k

a2

)
= R0.

The change of variable b(t) = a2(t) yields second order linear
differential equation with constant coefficients

3b̈ − R0b + 6k = 0.
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Cosmological solutions with constant scalar
curvature

Depending on the sign of R0 we have the following general solutions
for b(t) :

R0 > 0, b(t) =
6k

R0
+ σ cosh

√
R0

3
t + τ sinh

√
R0

3
t,

R0 = 0, b(t) = −kt2 + σt + τ,

R0 < 0, b(t) =
6k

R0
+ σ cos

√
−R0

3
t + τ sin

√
−R0

3
t,

where σ and τ are some constants.
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Cosmological solutions with constant scalar
curvature

When we substitute R = R0 = constant 6= 2Λ into the equations of
motion we get condition

R0 + 4R00 = 0.

Equations of motion are satisfied without conditions on function
F(�), because �

√
R − 2Λ = 0.

Consider now constraints which equation R0 + 4R00 = 0 implies on

the parameters σ, τ, k and R0. Since R00 = −3 ä
a = 3

4
(ḃ)2−2bb̈

b2 , it
follows the following connections between parameters:

R0 > 0, 36k2 = R2
0 (σ2 − τ 2),

R0 = 0, σ2 + 4kτ = 0,

R0 < 0, 36k2 = R2
0 (σ2 + τ 2).
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Cosmological solutions with R0 > 0.

In this case, it is convenient to take R0 = 4Λ > 0. Hence, scale factor
a(t) is

a(t) =

√
3k

2Λ
+ σ cosh

√
4Λ

3
t + τ sinh

√
4Λ

3
t.

Moreover, let σ2 − τ 2 > 0, then we choose ϕ such that
coshϕ = σ√

σ2−τ 2
and sinhϕ = τ√

σ2−τ 2
, and we can write a(t) as

a(t) =

√
3k

2Λ
+
√
σ2 − τ 2 cosh

(√4Λ

3
t + ϕ

)
, k = ±1.
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Cosmological solutions with R0 > 0.

Since 3
2Λ =

√
σ2 − τ 2, one can rewrite a(t) in the form

a(t) =

√√√√3(cosh
(√

4Λ
3 t + ϕ

)
+ k)

2Λ
, k = ±1.

Now, let σ2 − τ 2 = 0, then the scale factor takes the form

a(t) =
√
σe±
√

Λ
3 t , k = 0, σ > 0.
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Cosmological solutions with R0 = 4Λ > 0.

There are three cases:

Case a(t) = A e±
√

Λ
3 t , k = 0.

One has H(t) = ±
√

Λ
3 , G00 = Λ.

Case a(t) =
√

3
Λ cosh

√
Λ
3 t, k = +1.

Now H(t) =
√

Λ
3 tanh

√
Λ
3 t, G00 = Λ.

Case a(t) =
√

3
Λ | sinh

√
Λ
3 t |, k = −1.

Here H(t) =
√

Λ
3 coth

√
Λ
3 t, G00 = Λ.
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Cosmological solutions with R0 < 0.

In the third case, R0 < 0 it is convenient to take R0 = −4 | Λ |.
Hence, scale factor a(t) is

a(t) =

√
− 3k

2 | Λ |
+ σ cos

√
4 | Λ |

3
t + τ sin

√
4 | Λ |

3
t.

Moreover, if we choose ϕ such that cosϕ = σ√
σ2+τ 2

and

sinϕ = τ√
σ2+τ 2

we can rewrite it as

a(t) =

√
− 3k

2 | Λ |
+
√
σ2 + τ 2 cos(

√
4 | Λ |

3
t − ϕ) , k = −1.
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Cosmological solutions with R0 < 0.

Since in this case 3
2|Λ| =

√
σ2 + τ 2, solution a(t) can be presented in

the form

a(t) =

√
3

2 | Λ |

(
cos(

√
4 | Λ |

3
t − ϕ) + 1

)
, (k = −1).
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Cosmological solution with R0 = −4 | Λ |< 0.

The corresponding solution has the form

a(t) =

√
− 3

Λ
| cos

√
−Λ

3
t |,

where Λ is negative cosmological constant. In this case

H(t) = −
√
−Λ

3
tan

√
−Λ

3
t,

G00 = − | Λ |, k = −1.
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Conclusion

We have considered a class of nonlocal gravity models with
cosmological constant Λ and without matter, given by

S =
1

16πG

∫
(R − 2Λ +

√
R − 2ΛF(�)

√
R − 2Λ )

√
−g d4x .

Using ansatz �
√
R − 2Λ = p

√
R − 2Λ we found some solutions:

The solution a(t) = A e
Λ
6 t

2

, Λ 6= 0, k = 0.

The solution a(t) = A t2/3e
Λ
14 t

2

, Λ 6= 0, k = 0.

The solution a(t) = A e±
√

Λ
6 t , Λ > 0, k = ±1.
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Conclusion

Cosmological solutions with constant R(t) = 4Λ > 0

a(t) = A e±
√

Λ
3 t , k = 0.

a(t) =
√

3
Λ cosh

√
Λ
3 t, k = +1.

a(t) =
√

3
Λ | sinh

√
Λ
3 t |, k = −1.

Cosmological solutions with constant R(t) = −4 | Λ |< 0

a(t) =
√
− 3

Λ | cos
√
−Λ

3 t |, Λ < 0, k = −1.
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