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Introduction - Overview of Talk

Dark energy and dark matter , occupying around 70% and 25%

of the matter content of the “late” (today’s) Universe,

respectively, are still among most unexplained “mysteries” in

cosmology and astrophysics.

• Dark energy is responsible for the accelerated expansion of

today’s Universe, i.e., dark energy acts effectively as

repulsion force among the galaxies – completely

counterintuitivly w.r.t. naive notion about gravity as an

attractive force.

• And vice versa, dark matter holds together the matter objects

inside the galaxies.

Both interact only gravitationally – no direct interaction with

ordinary (baryonic) matter, in particular, they do not interact

electromagnetically and thus remain “dark”. 3



Introduction - Overview of Talk
Principal challenge in modern cosmology is to understand

theoretically from first principles the nature of both “dark” species

as a manifestation of the dynamics of a single entity of matter.

Multitude of approaches proposed so far:

• “Chaplygin gas” models [Kamenshchik et.al., Bilic et.al];

• “purely kinetic k-essence” models [Scherrer,. . .];

• “Mimetic” dark matter model [Mukhanov et.al.].

We will achieve unified description of dark energy and dark

matter based on a class of generalized non-canonical models of

gravity interacting with a single scalar “darkon” field employing

the method of non-Riemannian volume-forms (volume
elements) .

The latter are constructed in terms of higher-rank gauge fields

which are essentially pure-gauge degrees of freedom - i.e., NO
additional gravitational degrees of freedom are introduce d. 4



Introduction - Overview of Talk

Next, we will also couple a second scalar “inflaton” field

describing the universe’s evolution in a unified way

(“quintessence”), as well as the fields of the electroweak bosonic

sector.

Due to the remarkable impact of the non-Riemannian

volume-forms we obtain:

• Scalar field effective potential possessing two infinitely large

flat regions as function of the “inflaton” with vastly different

heights (scales) corresponding to the “early” and “late”

epochs of the Universe, respectively.

• We obtain a gravity-assisted generation of electro-weak
spontaneous gauge symmetry breaking in the
post-inflationary “late” Universe, while the Higgs-like
scalar remains massless in the “early” Universe. This is

explicit implementaion of an intriguing idea [Bekenstein-86]. 5



Hidden Noether Symmetry and Unification of DE and DM

First, Let us consider the following simple particular case of a

non-conventional gravity-scalar-field action – a member of the

general class of the “modified-measure” gravity-matter theories

(for simplicity we use units with the Newton constant

GN = 1/16π):

S =

∫
d4x

√−g R+

∫
d4x

(√−g + Φ(C)
)
L(u, Y ) . (1)

Here R denotes the standard Riemannian scalar curvature for

the pertinent Riemannian metric gµν . In the second term in (1) –

the scalar field Lagrangian is coupled symmetrically to two

mutually independent spacetime volume-forms – the standard

Riemannian
√−g and to an alternative non-Riemannian one:

Φ(C) =
1

3!
εµνκλ∂µCνκλ . (2)
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Hidden Noether Symmetry and Unification of DE and DM
L(u, Y ) is general-coordinate invariant Lagrangian of a single

scalar field u(x), the simplest example being:

L(u, Y ) = Y − V (u) , Y ≡ −1

2
gµν∂µu∂νu , (3)

Crucial new property – we obtain dynamical constraint on

L(u, Y ) as a result of the equations of motion w.r.t. Cµνλ:

∂µL(u, Y ) = 0 −→ L(u, Y ) = −2M0 = const , (4)

i.e., Y = V (u)− 2M0. M0 will play the role of dynamically

generated cosmological constant.

A second crucial property - hidden strongly nonlinear Noether

symmetry of scalar field action in (1) due to the presence of

Φ(C) (here below Cµ ≡ 1
3!ε

µνκλCνκλ):

δǫu = ǫ
√
Y , δǫgµν = 0 , δǫCµ = −ǫ

1

2
√
Y
gµν∂νu

(
Φ(C) +

√−g
)
. (5)
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Hidden Noether Symmetry and Unification of DE and DM

Then, standard Noether procedure yields a conserved current:

∇µJ
µ = 0 , Jµ ≡ −

(
1 +

Φ(C)√−g

)√
2Y gµν∂νu (6)

The energy-momentum tensor Tµν and Jµ (6) can be cast into a

relativistic hydrodynamical form (taking into account (4)):

Tµν = −2M0gµν + ρ0uµuν , Jµ = ρ0u
µ , (7)

where the pressure p = −2M0 = const and:

ρ0 ≡
(
1 +

Φ(C)√−g

)
2Y , uµ ≡ − ∂µu√

2Y
, uµuµ = −1 . (8)

The total energy density is ρ = ρ0 − p = 2M0 +
(
1 + Φ(C)√

−g

)
2Y .
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Hidden Noether Symmetry and Unification of DE and DM
Because of the constant pressure (p = −2M0) ∇νTµν = 0

implies both hidden Noether symmetry current Jµ = ρ0u
µ

conservation, as well as geodesic fluid motion:

∇µ

(
ρ0u

µ
)
= 0 , uν∇νuµ = 0 . (9)

Therefore, Tµν = −2M0gµν + ρ0uµuν represents an exact sum of

two contributions of the two dark species:

p = pDE + pDM , ρ = ρDE + ρDM (10)

pDE = −2M0 , ρDE = 2M0 ; pDM = 0 , ρDM = ρ0 , (11)

i.e., the dark matter component is a dust fluid flowing along

geodesics. This is explicit unification of dark energy and
dark matter originating from the dynamics of a single scalar
field - the “darkon” u.
Further developments along this line in [E. Guendelman’s talk].
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“Quintessence”, Unified DE/DM and Higgs

We will now extend our previous gravity-“darkon” model to

gravity coupled to both “inflaton” ϕ(x) and “darkon” u(x) scalar

fields within the non-Riemannian volume-form formalism, as well

as we will also add coupling to the bosonic sector of the

electro-weak model:

S =

∫
d4xΦ(A)

[
gµνRµν(Γ) + L1(ϕ,X) + L2(σ,∇σ;ϕ)

]
+

∫
d4xΦ(B)

[
U(ϕ) + L3(A,B) + Φ(H)√−g

]
+

∫
d4x

(√−g + Φ(C)
)
L(u, Y ) . (12)

Here the following notations are used:

• Φ(A) = 1
3!ε

µνκλ∂µAνκλ and Φ(B) = 1
3!ε

µνκλ∂µBνκλ – two

new independent non-Riemannian volume-forms

(non-Riemannian volume elements) apart from Φ(C);
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“Quintessence”, Unified DE/DM and Higgs

• Φ(H) = 1
3!ε

µνκλ∂µHνκλ is the dual field-strength of an

additional auxiliary tensor gauge field Hνκλ crucial for the

consistency of (12).

• Important - we use Palatini formalism: R = gµνRµν(Γ) ; gµν ,

Γλ
µν – metric and affine connection are apriori independent.

• σ ≡ (σa) is a complex SU(2)× U(1) iso-doublet Higgs-like

scalar field with a Lagrangian:

L2(σ,∇σ;ϕ) = −gµν
(
∇µσa)

∗∇νσa − V0(σ)e
αϕ . (13)

The gauge-covariant derivative acting on σ reads:

∇µσ =
(
∂µ − i

2
τAAA

µ − i

2
Bµ

)
σ , (14)

with 1
2τA (τA – Pauli matrices, A = 1, 2, 3) indicating the

SU(2) generators. 11



“Quintessence”, Unified DE/DM and Higgs

• The “bare” σ-field potential is of the same form as the

standard Higgs potential:

V0(σ) =
λ

4

(
(σa)

∗σa − µ2
)2

. (15)

• The SU(2)× U(1) gauge field action L(A,B) is of the

standard Yang-Mills form (all SU(2) indices

A,B,C = (1, 2, 3)):

L3(A,B) = − 1

4g2
F 2(A)− 1

4g′ 2
F 2(B) , (16)

F 2(A) ≡ FA
µν(A)FA

κλ(A)gµκgνλ , F 2(B) ≡ Fµν(B)Fκλ(B)gµκgνλ ,

FA
µν(A) = ∂µAA

ν − ∂νAA
µ + ǫABCAB

µAC
ν , Fµν(B) = ∂µBν − ∂νBµ .

AA
µ (A = 1, 2, 3) and Bµ denote the corresponding SU(2) and

U(1) electroweak gauge fields.
12



“Quintessence”, Unified DE/DM and Higgs

• The “inflaton” ϕ Lagrangian terms are given by:

L1(ϕ,X) = X − V1(ϕ) , X ≡ −1

2
gµν∂µϕ∂νϕ , (17)

V1(ϕ) = f1 exp{αϕ} , U(ϕ) ≡ f2 exp{2αϕ} , (18)

where α, f1, f2 are dimensionful positive parameters.

• The form of the action (12) is fixed by the requirement of

invariance under global Weyl-scale transformations:

gµν → λgµν , Γµ
νλ → Γµ

νλ , ϕ → ϕ− 1

α
lnλ ,

Aµνκ → λAµνκ , Bµνκ → λ2Bµνκ , Hµνκ → Hµνκ , (19)

and the electro-weak sector (σ,A,B) is inert w.r.t. (19).
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“Quintessence”, Unified DE/DM and Higgs

Eqs. of motion w.r.t. affine connection Γµ
νλ yield a solution for the

latter as a Levi-Civita connection:

Γµ
νλ = Γµ

νλ(ḡ) =
1

2
ḡµκ (∂ν ḡλκ + ∂λḡνκ − ∂κḡνλ) , (20)

w.r.t. to the Weyl-rescaled metric ḡµν :

ḡµν = χ1gµν , χ1 ≡
Φ1(A)√−g

. (21)

Transition from original metric gµν to ḡµν : “Einstein-frame” ,

where the gravity eqs. of motion are written in the standard form

of Einstein’s equations: Rµν(ḡ)− 1
2 ḡµνR(ḡ) = 1

2T
eff
µν with an

appropriate effective energy-momentum tensor given in terms

of an Einstein-frame matter Lagrangian Leff (see (25) below).
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“Quintessence”, Unified DE/DM and Higgs

Solutions of the eqs. of motion of the action (12) w.r.t. auxiliary

tensor gauge fields Aµνλ, Bµνλ and Hµνλ yield:

Φ(B)√−g
≡ χ2 = const , R+ L1(ϕ,X) + L2(σ,∇σ;ϕ) = M1 = const ,

U(ϕ) + L3(A,B) + Φ(H)√−g
= −M2 = const . (22)

Here M1 and M2 are arbitrary dimensionful and χ2

arbitrary dimensionless integration constants, similar to M0 (4).

Within the canonical Hamilton formalism we have shown

that M0, M1,2, χ2 are the only remnant of the auxiliary gauge

fields Cµνλ, Aµνλ, Bµνλ, Hµνλ entering (12) – they have the

meaning of conserved Dirac-constrained canonical momenta

conjugated to some of the components of the latter.
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We derive from (12) the physical Einstein-frame theory w.r.t.

Weyl-rescaled Einstein-frame metric ḡµν (21) and perform an

additional “darkon” field redefinition u → ũ:

∂ũ

∂u
=

(
V1(u)− 2M0

)− 1

2 ; Y → Ỹ = −1

2
ḡµν∂µũ∂ν ũ . (23)

The Einstein-frame action reads:

S =

∫
d4x

√−ḡ
[
R(ḡ) + Leff

(
ϕ, X̄, Ỹ ;σ, X̄σ,A,B

)]
, (24)

where (now the kinetic terms are given in terms of the

Einstein-frame metric, e.g. X̄ = −1
2 ḡ

µν∂µϕ∂νϕ, etc.):

Leff

(
ϕ, X̄, Ỹ ;σ, X̄σ,A,B

)
= X̄ − Ỹ

(
V1(ϕ) + V0(σ)e

αϕ +M1

)

+Ỹ 2
[
χ2(U(ϕ) +M2)− 2M0

]
+ L[σ, X̄σ,A,B] , (25)

with L[σ, X̄σ,A,B] ≡ −ḡµν
(
∇µσa)

∗∇νσa− χ2

4g2
F̄ 2(A)− χ2

4g′ 2
F̄ 2(B). 16



“Quintessence”, Unified DE/DM and Higgs

For static (spacetime idependent) scalar field configurations we

obtain from (25) the following Einstein-frame effective scalar

“inflaton+Higgs” effective potential:

Ueff

(
ϕ, σ

)
=

(
V1(ϕ) + V0(σ)e

αϕ +M1

)2

4
[
χ2(U(ϕ) +M2)− 2M0

]

=

[(
f1 +

λ
4

(
(σa)

∗σa − µ2
)2)

eαϕ +M1

]2

4
[
χ2(f2e2αϕ +M2)− 2M0

] . (26)

Ueff

(
ϕ, σ

)
has few remarkable properties.

First, Ueff

(
ϕ, σ

)
possesses two infinitely large flat regions (when

σ is fixed):

(a) (−) flat region for large negative values of the “inflaton” ϕ;

(b) (+) flat region and large positive values of ϕ,

respectively, as depicted in Fig.1 on the next slide.
17



“Quintessence”, Unified DE/DM and Higgs

Qualitative shape of the effective scalar potential Ueff (26) as

function of ϕ for M1 > 0.

18



• In the (+) flat region (large positive “inflaton” values) (26)

reduces to:

Ueff

(
ϕ, σ

)
≃ U(+)(σ) =

(
λ
4

(
(σa)

∗σa − µ2
)2

+ f1

)2

4χ2f2
. (27)

• (27) yields as a lowest lying vacuum the Higgs one:

|σ| = µ , (28)

i.e., we obtain the standard spontaneous breakdown of

SU(2)× U(1) gauge symmetry.

• At the Higgs vacuum (28) we get from (27) a dynamically

generated cosmological constant Λ(+):

U(+)(µ) ≡ 2Λ(+) =
f2
1

4χ2f2
. (29)

19



“Quintessence”, Unified DE/DM and Higgs

• If we identify the integration constants in (26) with the

fundamental constants of Nature – MPl (Planck mass) and

MEW (electro-weak mass scale) as f1 ∼ M4
EW , f2 ∼ M4

Pl,

we are then naturally led to a very small vacuum energy

density:

U(+)(µ) ∼ M8
EW /M4

Pl ∼ 10−122M4
Pl , (30)

which is the right order of magnitude for the present epoch’s

vacuum energy density. Therefore, we can identify the (+)

flat region (large positive “inflaton” values) of Ueff (26) as

describing the present “late” universe.

20



• In the (−) flat region (large negative “inflaton” values) (26)

reduces to:

Ueff

(
ϕ, σ

)
≃ U(−) ≡

M2
1

4(χ2 M2 − 2M0)
. (31)

If we take M1 ∼ M2 ∼ 10−8M4
Pl and M0 ∼ M4

EW , then the

vacuum energy density U(−) (31) becomes U(−) ∼ 10−8M4
Pl,

which conforms to the Planck Collaboration data for the

energy scale of inflation (of order 10−2MPl). This allows to

identify the (−) flat region (large negative “inflaton” values) of

the “inflaton+Higgs” effective potential (26) as describing the

“early” universe, in particular, the inflationary epoch.

• In the (−) flat region the effective potential (31) is σ-field

idependent. Thus, the Higgs-like iso-doublet scalar field σa

remains massless in the “early” (inflationary) Universe and

accordingly there is no electro-weak spontaneous
symmetry breaking there. 21



In a remarkable paper from 1986 J. Bekenstein proposed the

intriguing idea about a gravity-assisted spontaneous symmetry

breaking of electro-weak (Higgs) type without invoking unnatural

(according to BekensteinŠs opinion)ingredients like negative

mass squared and a quartic self-interaction for the Higgs field.

To implement this idea, consider a small modification of (12):

Ŝ =

∫
d4xΦ(A)

[
gµνRµν(Γ)− 2Λ0

Φ(A)√−g
+X + f̂1e

αϕ +Xσ − V0(σ)e
αϕ

]

+

∫
d4xΦ(B)

[
U(ϕ) + L3(A,B) + Φ(H)√−g

]
, (32)

where in this case the bare Higgs-like pontial is the standard

mass term:

V0(σ) = m2
0 (σa)

∗(σa) . (33)

Also here we have an additional term qudratic w.r.t. Φ(A) with a

small parameter Λ0 later to be identified with the present (“late”

Universe) CC. 22



Upon passage from (32) to the physical Einstein frame the

“inflaton+Higgs” effective potential becomes:

Ueff

(
ϕ, σ

)
=

[(
−f̂1 +m2

0 (σa)
∗(σa)

)
eαϕ +M1

]2

4
[
χ2(f2e2αϕ +M2)− 2M0

] + 2Λ0 . (34)

In the (+) flat region (34) reduces to:

Ueff

(
ϕ, σ

)
≃ U(+)(σ) =

(
−f̂1 +m2

0 (σa)
∗(σa)

)2

4χ2 f2
+ 2Λ0 . (35)

Spontaneous EW symmetry breaking occurs at |σvac| = 1
m0

√
f̂1

with natural identification of orders of magnitude

f̂1 ∼ M4
EW , m0 ∼ MEW . Thus, the residual cosmological

constant Λ0 has to be identified with the current epoch

observable cosmological constant (∼ 10−122M4
Pl).
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Quintessence Stabilized via Gauss-Bonnet/Inflaton Coupli ng
Stability Issues : It is desirable that the “late” Universe epoch,

instead of the infinitely large (+) flat region, would be described

in terms of a stable minimum of the effective “inflaton” potential.

To this end we will introduce an additional linear coupling of the

“inflaton” to Gauss-Bonnet gravitational term (for simplicity we

discard here the “darkon” field):

SEF+GB =

∫
d4x

√−ḡ
[
R(ḡ) + X̄ + X̄σ − Ueff

(
ϕ, σ

)

− χ2

4g2
F̄ 2(A)− χ2

4g′ 2
F̄ 2(B)− b ϕ R̄GB

]
, (36)

with Ueff

(
ϕ, σ

)
as in (26), and:

R̄GB = R̄µνκλR̄
µνκλ − 4R̄µνR̄

µν + R̄2 , (37)

where all objects with superimposed bars are defined w.r.t.

second-order formalism with the Einstein-frame metric ḡµν .
24



Here we will be interested in “vacuum” solutions, i.e., for

constant values of the matter fields. The corresponding

equations of motion for constant ϕ and σ read:

R̄µν −
1

2
ḡµνR̄ = −1

2
ḡµνUeff(ϕ, σ) , (38)

∂

∂ϕ
Ueff(ϕ, σ) + bRGB = 0 ; (39)

∂

∂σa
Ueff(ϕ, σ) = 0 −→ ∂

∂σa
V0(σ) = 0

−→ (σa)
∗ ((σa′)∗σa′ − µ2

)
= 0 −→ |σvac| = µ or |σvac| = 0 . (40)

For constant ϕ and σ the solution to (38) is maximally symmetric:

R̄µνκλ =
1

6
Ueff(ϕ, σ)

(
ḡµκḡνλ − ḡµλḡνκ

)
, (41)

which yields for the Gauss-Bonnet term (37):

RGB = 2
3

(
Ueff(ϕ, σ)

)2
, and insert it in (39):

25



∂

∂ϕ
Ueff(ϕ, σvac) +

2b

3

(
Ueff(ϕ, σvac)

)2
= 0 , (42)

with σvac as in (40). Eq.(42) implies that in fact the total effective

inflaton potential after introducing Gauss-Bonnet/inflaton linear

coupling is modified from Ueff(ϕ, σvac) (26) to the following one:

Vtotal(ϕ, σvac) = Ueff(ϕ, σvac) +
2b

3

∫ ϕ

dφ
(
Ueff(φ, σvac)

)2
, (43)

∂

∂ϕ
Vtotal(ϕ, σvac) =

bM4
1

(
e−αϕ + f̃1/M1

)

24χ2
2M

2
2

(
e−2αϕ + f2/M2

) F (e−αϕ) = 0 , (44)

F (z) ≡ z3 +
3f̃1
M1

(
1 +

4αχ2M2

bM2
1

)
z2 − 3f̃2

1

M2
1

(4αχ2f2

b f̃2
1

− 1
)
z +

f̃3
1

M3
1

= 0 , (45)

where f̃1 ≡ f1 +
λ
4 (|σvac|2 − µ2)2. Therefore, the “vacuum”

solutions z ≡ e−αϕvac must be real positive roots of the cubic

polynomial F (z). 26



Qualitative plot of the cubic polynomial F (z) (45):

The root z0 correspond to a stable minimum of total effective

inflaton potential Vtotal(ϕ, σvac) (43), whereas the root z1
corresponds to a maximum of Vtotal(ϕ, σvac).
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Qualitative shape of the total effective “inflaton” potential

Vtotal(ϕ, σvac) (43) as function of ϕ after adding inflaton coupling

to Gauss-Bonnet term.

(i) Minimum – “late” Universe evolution

(ii) Maximum (sufficiently smooth for small GB coupling b) – start

of “hill-top” inflation [Hawking-Hertog, 2002]
28



Conclusions

Employing non-Riemannian spacetime volume-forms (volume

elements) in generalized gravity-matter theories allows for

several interesting developments:

• Simple unified description of dark energy and dark matter as

manifestation of the dynamics of a single non-canonical

scalar field (“darkon”).

• Construction of a new class of models of gravity interacting

with a scalar “inflaton” ϕ, as well as with other

phenomenologically relevant matter including Higgs-like

scalar σ, which produce an effective full scalar potential of

ϕ, σ with few remarkable properties.

29



Conclusions

• The “inflaton” effective potential (at fixed σ) possesses two

infinitely large flat regions with vastly different energy scales

for large negative and large positive values of ϕ. This allows

for a unified description of both “early” universe inflation as

well as of present “dark energy” epoch in universe’s

evolution.

• In the “early” universe the would-be Higgs field σ remains

massless and decouples from the “inflaton” ϕ. The “early”

universe evolution is described entirely in terms of the

“inflaton” dynamics.

• In the post-inflationary epoch ϕ and σ exchange roles. The

inflaton ϕ becomes massless and decoupled, whereas σ

becomes a genuine Higgs field with a dynamically generated

electro-weak-type symmetry breaking effective potential.
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Conclusions

• A natural choice for the parameters involved conforms to

quintessential cosmological and electro-weak

phenomenologies.

• Linear “inflaton” coupling to the gravitational Gauss-Bonnet

term stabilizes the “late” universe dynamics by creating a

shallow minimum of the effective “inflaton” potential instead

of the infinitely large (+) flat region. Together with this the

Gauss-Bonnet coupling converts the (−) flat region of the

effective “inflaton” potential into a local smooth maximum

where the Hawking-Hertog “hill-top” inflationary mechanism

is applicable.
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Conclusions
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Modified-Measure Theories

Spacetime volume-forms (generally-covariant integration

measures) are given by nonsingular maximal rank diff. forms ω:
∫

M

ω
(

. . .
)

=

∫

M

dxD Ω
(

. . .
)

, ω =
1

D!
ωµ1...µD

dxµ1 ∧ . . . ∧ dxµD , (1)

ωµ1...µD
= −εµ1...µD

Ω , dxµ1 ∧ . . . ∧ dxµD = εµ1...µD dxD . (2)

The integration measure density Ω transforms as scalar density

under general coordinate reparametrizations.

In standard generally-covariant theories (with action

S =
∫

dDx
√−gL) the Riemannian spacetime volume-form is

defined through the “D-bein” (frame-bundle) canonical one-forms

eA = eAµ dx
µ (A = 0, . . . ,D − 1):

ω = e0 ∧ . . . ∧ eD−1 = det ‖eAµ ‖ dDx =
√

− det ‖gµν‖ dDx . (3)

9



Modified-Measure Theories

There is NO a priori any obstacle to employ instead of
√−g

another alternative non-Riemannian volume element as in

(1)-(2) given by an exact D-form ω = dA where:

A =
1

(D − 1)!
Aµ1...µD−1

dxµ1 ∧ . . . ∧ dxµ−1 , (4)

so that the non-Riemannian integration measure density reads:

Ω ≡ Φ(A) =
1

(D − 1)!
εµ1...µD ∂µ1

Aµ2...µD
. (5)

Here Aµ1...µD−1
is an auxiliary rank (D − 1) antisymmetric tensor

gauge field, which will turn out to be (almost) pure-gauge degree

of freedom. Φ(A), which is in fact the dual of the rank D field

strength Fµ1...µD
= 1

(D−1)!∂[µ1
Aµ2...µD] = −εµ1...µD

Φ(A), similarly

transforms as scalar density under general coordinate

reparametrizations. 10
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