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Exploring	spaceAme	at	the	Planck	scale

Our	main	goal	is	to	construct	a	theory	of	Quantum	Gravity,	a		
fundamental	quantum	theory	underlying	General	Rela%vity.	
!My	talk	today	is	about	the	new	concept	of	quantum	curvature,	a	

quasilocal	observable	in	a	nonperturba%ve,	Planckian	regime,	
where	space%me	is	no	longer	described	by	a	smooth	metric	gμν(x).	
!I	will	explain	the	idea	in	the	con%nuum	and	then	implement	it	on	

various	piecewise	linear	(PL)	spaces,	including	the	equilateral	
configura%ons	of	(Causal)	Dynamical	Triangula;ons.	CDT	is	a	
candidate	theory	of	quantum	gravity,	based	on	a	non-perturba%ve	
path	integral,	where	our	“quantum	Ricci	curvature”	can	be	
calculated	in	a	straighOorward	way.	However,	the	concept	is	
applicable	much	more	widely,	and	you	need	not	know	about	CDT.			
! ! (joint	work	with	Nilas	Klitgaard,	to	be	published)



The	case	for	quantum	observables
Even	assuming	we	had	resolved	all	“technical	difficul%es”	in	specific	
quantum	gravity	theories,	we	s%ll	face	the	key	issue	of	having	to	
construct	meaningful	observables	to	quan%fy	the	physical	quantum	
proper%es	of	gravity	and	space%me	(or	whatever	remains	of	them)	
at	the	Planck	scale.	These	are	prior	to	the	development	of	any	true	
QG	phenomenology	and	should		
!1.	be	purely	geometrical	(coordinate-invariant,	background-indept.),		
2.	have	finite,	nonzero	expecta%on	values	in	the	ensemble,		
3.	be	measurable	reliably	in	the	window	accessible	to	quan%ta%ve	
evalua%on	(simula%on	or	other	numerical	methods),		

4.	have	a	(semi-)classical	limit.	
!We	have	such	observables,	e.g.	in	CDT,	but	they	are	rather	coarse	
(dynamical	dimensions,	volume	profiles)	and	should	be	comple-
mented	by	quan%%es	carrying	more	local	geometric	informa%on.



•	CDT	quantum	gravity	is	a	perfect	se^ng		
to	study	such	nonperturba%ve	quantum		
observables.	Its	regularized	path	integral		
(“sum	over	space%mes”)	is	defined	purely		
geometrically	in	terms	of	simplicial	manifolds	that	are	gluings	of	
iden%cal	D-dimensional	flat	simplices	(➔	“Random	Geometry”).	
Observables	are	evaluated	quan%ta%vely	by	Monte	Carlo	simula%on.		
!•	Since	lengths	and	volumes	come	in	discrete	units,	measuring	is	

oaen	reduced	to	simple	coun%ng.	(C)DT	geometries	are	of	“Regge	
type”,	i.e.	con%nuous,	but	with	curvature	singulari%es.	
!•	This	looks	like	a	conserva%ve	se^ng,	but	allows	for	nonclassical	

behaviour	and	noncanonical	scaling.	In	fact,	we	have	learned	that	
such	behaviour	is	generic	and	oaen	prevents	the	existence		
of	a	classical	limit	when	the	UV-cutoff	a	is	removed.	

The	case	for	CDT
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•	Curvature	is	a	crucial	concept	in	describing	classical	space%me	
geometry.	It	is	a	complex,	derived	object.	Computa%on	of	the	
Riemann	tensor	Rκλμν[g,∂g,∂2g;x)	requires	a	smooth	metric	g.		
!•	Finding	a	meaningful	no%on	of	“quantum	curvature”,	applicable	in	a	

more	general	context,	has	so	far	received	lifle	afen%on.	(Note	that	
defini%ons	in	terms	of	deficit	angles	are	of	limited	usefulness.)	
!•	Is	there	a	classical	characteriza%on	of	curvature	that	can	be	used	to	

obtain	a	coarse-grained,	robust	and	computable	no%on	of	quantum	
curvature	in	nonperturba%ve	quantum	gravity?		
!

The	case	for	curvature



•	Curvature	is	a	crucial	concept	in	describing	classical	space%me	
geometry.	It	is	a	complex,	derived	object.	Computa%on	of	the	
Riemann	tensor	Rκλμν[g,∂g,∂2g;x)	requires	a	smooth	metric	g.		
!•	Finding	a	meaningful	no%on	of	“quantum	curvature”,	applicable	in	a	

more	general	context,	has	so	far	received	lifle	afen%on.	(Note	that	
defini%ons	in	terms	of	deficit	angles	are	of	limited	usefulness.)	
!•	Is	there	a	classical	characteriza%on	of	curvature	that	can	be	used	to	

obtain	a	coarse-grained,	robust	and	computable	no%on	of	quantum	
curvature	in	nonperturba%ve	quantum	gravity?		YES.	
!•	N.B.:	we	are	working	in	a	Riemannian	context	(“aaer	Wick	rota%on”)	

The	case	for	curvature



The	key	idea	(classical):
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w’	is	the	parallel	transport	of	w	along	v	
p’	=	expp(δv),	q	=	expp(εw),		
⇒	there	is	a	unique	point	q’	=	expp’(εw')

On	a	D-dimensional	manifold	(M,gμν),	compare	the	distance	of	two	
small	(D-1)-spheres	with	the	distance	δ	of	their	centres.		
!Step	1:

then	we	have
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Step	2:	
!Let	Sεp	denote	the	ε-sphere	
of	all	points	at	geodesic	
distance	ε	from	its	centre	p.	
Then	the	sphere	distance	to	
another	ε-sphere	Sεp’		whose	
centre	p’	lies	at	a	distance		
d(p,p’)	=	δ,	and	whose	points		
are	obtained	by	parallel	transport	is	defined	by

which	for	small	δ,	ε	is	given	by
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where	Ric(v,v)	is	the	Ricci	curvature	of	the	vector	v,	i.e.	the	average	
of	the	sec%onal	curvature	K(v,w)	over	all	two-planes	containing	v.

(note	unique	
associa%on	q	↔	q’)



This	formula,

d(S✏
p, S

✏
p0) = �

✓
1� ✏2

2D
Ric(v, v) +O(✏3 + �✏2)

◆
,

captures	our	key	statement:	“On	a	D-dim.	manifold	with	posi%ve		
(nega%ve)	Ricci	curvature,	the	distance	between	two	nearby	(D-1)-	
spheres	is	smaller	(larger)	than	the	distance	between	their	centres.”	
!This	observa%on	is	the	star%ng	point	for	Ollivier’s	“coarse	Ricci		
curvature”	(Y.	Ollivier,	J.	Funct.	Anal.	256	(2009)	810-864).		
[→	c.f.	work	by	C.	Trugenberger,	G.	Bianconi	(“QG	from	graphs”)]	
!However,	his	defini%on	involves	“transport	distance”	(in	absence	of	
parallel	transport),	which	is	very	difficult	to	compute	in	prac%ce.	
!Instead,	we	are	looking	for	a	no%on	of	“quantum	Ricci	curvature”	
which	is	computable,	scalable	(also	works	for	non-infinitesimal	scales)	
and	robust.	



Defining	quantum	Ricci	curvature
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Our	classical	star%ng	point	is	the	average	sphere	“distance”

which	uses	only	volume	and	distance	measurements,	and	therefore	
can	be	implemented	straighOorwardly	on	general	metric	spaces.		
!We	then	set	ε	=	δ,	corresponding	to	overlapping	spheres,		
and	define	the	“quantum	Ricci	curvature	Kq	at	scale	δ”		by

d̄(S�
p , S

�
p0)

�
= cq(1�Kq(p, p

0)), � = d(p, p0), cq > 0,

where	cq	appears	to	be	a	non-universal	constant	depending	on	the	
space	under	considera%on.	We	have	evaluated	Kq	on	classical		
model	spaces,	and	tested	it	on	a	variety	of	(mainly	2D)	PL	spaces		
(flat	regular	%lings,	“nice”	and	“not-so-nice”	triangula%ons).



Behaviour	on	constantly	curved	model	spaces

¯d(S�
p , S

�
p0)

�
=

8
<

:

1.5746 flat space

1.5746� 0.1440( �⇢ )
2
+ h.o. spherical case

1.5746 + 0.1440( �⇢ )
2
+ h.o. hyperbolic case

d(S✏
p, S

✏
p0)

�
=

8
<

:

1 flat space

1� 1
4 (

✏
⇢ )

2
+ h.o. spherical case

1 +

1
4 (

✏
⇢ )

2
+ h.o. hyperbolic case

Normalized	sphere	distance	for	2D	model	spaces,	for	small	ε,	δ:

This	is	consistent	with	the	general	formula	given	above	for	Ric	=1/ρ2.	
!Normalized	average	sphere	distance	for	2D	model	spaces,	for	ε	=	δ	
and	small	ε,	δ:

This	is	qualita%vely	similar	to	the	sphere	distance	results	for	ε	=	δ.



Behaviour	on	constantly	curved	model	spaces
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Normalized	sphere	distance	for	2D	model	spaces,	for	small	ε,	δ:

This	is	consistent	with	the	general	formula	given	above	for	Ric	=1/ρ2.	
!Normalized	average	sphere	distance	for	2D	model	spaces,	for	ε	=	δ	
and	small	ε,	δ:

This	is	qualita%vely	similar	to	the	sphere	distance	results	for	ε	=	δ.
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Behaviour	on	constantly	curved	model	spaces

Comparing	sphere	distance	and	average	sphere	distance	for	any	(δ,ε).	
Observe	the	qualitative	similarities	along	the	diagonals	δ	=	ε.

flat	case spherical		
case

new new



average	sphere		
distance				in	the		
con%nuum	(2D)	

normalized	average	sphere		
distance								in	the	con%nuum	(2D)	

Behaviour	on	constantly	curved	model	spaces
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We	measured	normalized	average		
sphere	distances								for	regular		
flat	la^ces	in	2D	and	3D.	

Example:	sphere	distance		
on	a	2D	square	la^ce	(δ=3)

Their	typical	behaviour	is	

d̄/�

-correc%ons

(cq	not	universal).	

“Nice”	spaces	I:	regular	triangulaAons
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How	can	we	construct	equilateral	random	geometries		
that	are	“close”	to	a	given	smooth	classical	geometry?



“Nice”	spaces	II:	Delaunay	triangulaAons	

A	Delaunay	triangula%on	is	a	triangula%on	T	of	a	finite	point	set	
P	⊂	R2	(the	ver%ces	of	T)	if	the	circumcircle	of	every	triangle	
contains	no	points	of	P	in	its	interior.	It	maximizes	the	minimum	
angle	and	avoids	thin,	elongated	triangles

1. generate	P	using	Poisson	
disc	sampling	on	a	2D	
constantly	curved	space	
(plane,	sphere,	hyperboloid)	

2. construct	the	Delaunay	
triangula%on	of	P	

3. set	all	edge	lengths	to	1

Our	procedure:



	How	nice	are	the	resulAng	PL	spaces?	

Our	construc%on	generates	random	
triangula%ons	with	mild	(small-scale)	
local	curvature	fluctua%ons.

Before	se^ng	ℓ=1:

probability	distribu%on	of	edge	lengths	ℓ	in	a	
Delaunay	triangula%on	of	flat	space,	N=6.2k

Before	and	aaer:

distribu%on	of	vertex	orders	
(flat	case)

volume	c	of	geodesic	circles	of	radius	δ:	
linearity	implies	flat-space	behaviour

Aaer:

1.1minDist 1.3minDist 1.5minDist 1.7minDist 1.9minDist 2.1minDist 2.3minDist
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Measuring	the	quantum	Ricci	curvature	Kq	

comparison	of	measurements	of	the	
normalized	average	sphere	distance						d̄/�

We	obtain	a	good	matching	with	con%nuum	results,	with	discre%za%on	
artefacts	confined	to	the	region											,	and	Kq	≈	0	elsewhere.� . 5

“flat”	regular,	hexagonal	la^ce

recall	that
d̄/� = cq(1 � Kq(�))

_

“flat”	random	triangula%on

flat	con%nuum	space



normalized	average	sphere	
distance								for	random	
triangula%ons	modelled	on	flat	
space	and	spheres	of	various	
sizes

d̄/�

We	observe	good	
“averaging	proper%es”.										

Measuring	the	quantum	Ricci	curvature,	ctd.	

d̄/�

“hyperbolic”	space	(yellow)	
“flat”	space	(blue)

normalized	average	sphere	distance									
							for	random	triangula%ons	
modelled	on	flat	and	hyperbolic	
space

_

_



	A	true	quantum	applicaAon	of	Ricci	curvature	

• consider	a	2D	toy	model	of	(Euclidean)	
quantum	gravity,	with	

!
!
!
• nonperturba%ve	path	integral	over	
geometries	with	fixed	topology	S2,	
soluble	via	“Dynamical	Triangula%ons”

Z(Λ) =

∫

geom. g
Dg e−Λ vol(g)

• path	integral	configura%ons	are	arbitrary	gluings	of	2D	equilateral	
triangles;	in	the	con%nuum	limit,	“typical”	ensemble	members	are	
highly	nonclassical,	fractal	and	nowhere	differen%able	geometries	
with	spectral	dimension	2	and	Hausdorff	dimension	4	
!• the	quantum	dynamics	is	governed	by	branching	“baby	universes”

a	typical	“universe”	in	DT		
quantum	gravity	in	2D					



Using	a	system	of	20.000	triangles,	we	found	a	surprisingly	good	fit	of	
the	data	with	those	of	a	con%nuum	sphere	in	4D(!),	with	posi%ve	
curvature.	This	points	to	a	very	robust	behaviour	of	quantum	Ricci	
curvature.	(N.B.:	the	Sδp	in	general	do	not	even	have	spherical	
topology	for	δ>1,	but	are	multiply	connected.)	

Quantum	Ricci	curvature	in	2D	DT	QGravity

We	have	measured	the	
expecta%on	value		
!

of	the	normalized	average	
sphere	distance	in	the	
ensemble	of	2D	Euclidean	DT	
quantum	gravity.

hd̄(S�
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measured	data:	blue	
con%nuum	sphere:	yellow



Summary

We	have	defined	a	novel	no%on	of	“quantum	Ricci	curvature	at	scale	
δ”,	based	on	the	average	sphere	distance																							,	and	have	
inves%gated	its	proper%es	in	both	a	classical	and	quantum	context,	
mostly	on	two-dimensional	geometries.	The	results	look	promising:	
!•	the	prescrip%on	is	straighOorward	to	implement	on	piecewise	flat	

spaces	and	is	feasible	computa%onally;	
!•	on	nice	piecewise	flat	spaces,	la^ce	artefacts	can	be	controlled	

and	smooth	results	are	reproduced	on	sufficiently	large	scales;		
!•	“robustness”	has	been	found	in	the	case	of	the	highly	quantum-

fluctua%ng	quantum	ensemble	of	2D	Euclidean	DT	quantum	gravity.	
!The	next	step	is	an	implementa%on	in	4D	Causal	Dynamical	

Triangula%ons,	a	nonperturba%ve	candidate	theory	of	quantum	
gravity,	to	understand	and	quan%fy	its	quantum	geometry.

d̄(S�
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�
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Thank	you!
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