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Canonical gravity

3-dimensional manifold:

3-metric and momentum:

The Poisson bracket:

The constraints:
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 Canonical gravity and matter

C = Cgr +H(matter)

Ca = Cgr
a + P (matter)

a

C = 0 Ca = 0

The Gauss constraint  
of the gauge fields

H =

Z

⌃
(NC +NaCa + ⇤iGi)

Gi = 0

Still:

{'(x),⇡(x0)} = �(x, x0)



 The issue of the dynamics

Hamiltonian:

H =

Z

⌃
d3x (NC +NaCa)

N Na

⌃

Physical observables: {O, C} = 0 = {O, Ca}

)

dO
dt

= {O, H} = 0

O = O(q, p,',⇡)



 Solution to the dynamics issue: 
the relational observables

1. J. Kijowski (1990) - deparametrization of GR
2. C. Rovelli  (1991) - initial values as observables
3. B. Dittrich (2006) - systematization 
4. T. Thiemann  (2006) - the book 

5. A. Dapor, W. Kamiński, J. Lewandowski, 
and J. Świeżewski,   (2013) - the subject revisited, 
several wrong statements pointed out and corrected 

6. Bodendorfer, Duch, Lewandowski, Świeżewski (2016) -
new idea, geometric construction of Dirac observables,
example: a Gauss observer  
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  The Gaussian gauge

Radial coordinates in ⌃

Impose gauge conditions:

qrr = 1, qr✓ = qr� = 0

prr � 1

2
paa = 0

Bodendorfer, Duch, Lewandowski, Świeżewski 2016 



 The Gaussian observer in spacetime

(t, r, ✓,�)

t

observers coordinates

r

Observer’s world line
in the spacetime

spacelike geodesic in rest

observer’s time observer’s  
 angles

✓,�, t = c

o

n

s

t

Observables:

@O
@t

O = ,

Dynamics:

…'(x(t, r, ✓,�))
g✓�(x(t, r, ✓,�))
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 Non-commuting of the corresponding 
observables  

Z
dr”...={'(x(t, r, ✓,�)),'(x(t, r0, ✓,�))}



t 2 Tp0M, l 2 so(g(p0))

Every translation and infinitesimal Lorentz rotation

Defines an infinitesimal diffeomorphism of 
X(t,l)

 Gaussian observer’s symmetries: 
 deformed Poincare 

⌃

preserving the observer’s coordinate system.

[X̃(0,l), X̃(0,l0)] = X̃(0,[l0,l])

[X̃(t,0), X̃(t0,0)] = X̃(0,l”)

l”µ⌫ = t↵t0�R↵�⌫
µ(p0)

Deformation



Deparametrization by a massless KG-scalar field
 

C =
⇡2

2q
+ +Cgr = 0

= 0 )

Ĉa = 0

( ) = 0

{h(x), h(y)} = 0

 (f⇤q) =  (q), f : ⌃ ! ⌃

)
~
i

�

��
� \h(q, p)[ bO, ]= 0

[ bO, ]Ĉa = 0 ) Ô =
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⇤
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Physical states

Physical observables
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Dynamics by deparametrization
 

bO 7!

e

i
~

\H(q,p)t \
o(q, p)e�

i
~

\H(q,p)t

H =

Z
ĥ d3x

In summary:  
physical states are diffeomorphism invariant 

 (q)

The dynamics is defined by Ĥand

Rovelli - Smolin (1993), Kuchar - Romano (1995), 
…, Domagala-Dziendzikowski-Lewandowski  (2011)  
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e
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d

3
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d

3
xĥ('̂+t)

' 7! '+ t

O(t) :=

< O(t) >= <  | | >

ˆ ˆ



 Connection-frame variables

1

4

Z

M
✏IJKLe

I ^ eJ ^ ⌦KLS(e,!) = �

Palatini

I, J, ... = 0, ..., 3

!IJ = �!JI

1

2�

Z

M
eI ^ eI ^ ⌦IJ

d!I
J + !I

K ^ !K
J = ⌦I

J



Loop quantum gravity

...1 General relativity in Ashtekar-Barbero variables

...2 LQG framework
LQG Hilbert space & solutions of the kinematical constraints
Implementation of the scalar constraint
Non-symmetric constraint operator: Regularization
Adjoint operator & symmetric constraint operator

...3 Summary, applications
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General relativity in Ashtekar-Barbero variables
Action of 3+1 gravity

S =

∫

R
dt

∫

Σ
d3x

[
1

kβ
Ȧi

a Ea
i −

(
Λj Gj +Na Ca +N C

)]

.
Ashtekar-Barbero variables
..

...... {Ai
a(x), E

b
j (y)} = kβδijδ

b
aδ(x, y), k = 8πG

.
Constraints
..

......

Gj(x) =
1

kβ
DaE

a
j (x) − Gauss constraints

Ca(x) =
1

kβ
F i
ab(x)E

b
i (x) − Vector constraints

C(x) =
1

2kβ2

⎡

⎢⎣
ϵijkF

k
abE

a
i E

b
j√∣∣det(Ea

i )
∣∣
(x) +

(
1− sβ2)

√∣∣det(Ea
i )

∣∣R(x)

⎤

⎥⎦ − Scalar constraints

s: spacetime signature

[Barbero (1994)], [Assanioussi, JL, Mäkinen (2015)] 3 / 21



General relativity in Ashtekar-Barbero variables

.
Constraints (smeared)
..

......

G(Λ) =

∫

Σ

d3xΛi(x)Gi(x) , C⃗(N⃗) =

∫

Σ

d3xNa(x)Ca(x) , C(N) =

∫

Σ

d3xN(x)C(x),

The Gauss constraints generate:

A′ = g−1Ag + g−1dg, E′ = g−1Eg, g ∈ C(Σ, SU(2))

The vector constraints generate:

A′ = ϕ∗A, E′ = ϕ−1
∗ E, ϕ ∈ Diff(Σ)

{G(Λ),G(Λ′)} = G([Λ,Λ′]),

{G(Λ), C⃗(N⃗)} = −G(LN⃗Λ),

{G(Λ), C(N)} = 0,

{C⃗(M⃗), C⃗(N⃗)} = C⃗(LM⃗ N⃗),

{C⃗(M⃗), C(N)} = C(LM⃗N) ,

{C(M), C(N)} = C⃗(qab[NM,b − MN,b]).

.
Holonomy-flux algebra
..

......

he[A] = P exp
(
−

∫

e
Ai

aτi dx
a
)

, PS,ξ :=
1

2

∫

S
ϵabcξ

i(x)Ea
i (x)dx

b ∧ dxc ;

The functions
Ψ(A) = ψ(he1 [A], ..., hen [A]) ,

where {e1, ..., en} =: Γ are all embedded graphs in Σ, form the algebra Cyl.

4 / 21
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General relativity in Ashtekar-Barbero variables

.
Holonomy-flux algebra
..

......

{D(he(A)), PS,ξ(E)} = −
1

2
D(he(A))D′(ξ(x0))

The fluxes become derivations
PS,x : Cyl → Cyl

5 / 21



Loop quantum gravity

...1 General relativity in Ashtekar-Barbero variables

...2 LQG framework
LQG Hilbert space & solutions of the kinematical constraints
Implementation of the scalar constraint
Non-symmetric constraint operator: Regularization
Adjoint operator & symmetric constraint operator

...3 Summary, applications



Hilbert space

.
Kinematical Hilbert space
..

......

Our Diff(Σ) invariant integral defined on Cyl
∫

Ψ(A)DA :=

∫
dg1 . . . dgnψ(g1, . . . , gn),

gives rise to the kinematical Hilbert space Hkin:

Hkin := Cyl =
⋃

Γ

CylΓ =
⊕

Γ

HΓ

.
Hilbert space of SU(2)-gauge invariant states
..

......

The space of solutions of the quantum Gauss constraint operator is the subspace H G
kin ⊂ Hkin

of gauge invariant functions. Can be obtained by the averaging:

(ηGaussΨ)(A) :=

∫
dg1...dgkψ(g

−1
j1

he1 (A)gi1 , ..., g
−1
jn

hen (A)gin )

H G
kin =

⊕

Γ

H G
Γ

[Ashtekar, JL (1993)]
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Hilbert space

j1, j2, j3, ... ∈ 1
2N, ι ∈ Inv

⊗
i Vji ⊗

⊗
l V

∗
jl

[Rovelli, Smolin (1995)], [Baez (1995)]

8 / 21



Mathematical structures

.
Mathematical structures
..

......

Cyl with the sup-norm defines an Abelian C∗-algebra. The integral
∫
DA defines a Diff(Σ)

invariant measure on the Gel'fand spectrum.
[Ashtekar, JL (1993)], [Marolf, Mourao (1994)], [Baez, Sawin (1995)]

The fluxes and Cyl define a quantum *-algebraA obtained by replacing

{·, ·} %→
1

i!
[·, ·]

The algebraA admites a unique diffeomorphism invariant state

ω : A → C

Our kinematical quantization is equivalent to the GNS with that state.
[JL, Okolow, Sahlmann, Thiemann (2005)]

9 / 21



The spatial diffeomorphism invariant states

.
Hilbert space of spatial diffeomorphism invariant states H G

Diff..

......

The space of solutions to the vector constraints is constructed through group averaging using a
rigging map η,

η : H G
Γ %→ Cyl∗

ψΓ %→
1

nΓ

∑

[ϕ]∈Diff/TDiffΓ

⟨U(ϕ)ψΓ| =: η(ψΓ)

nΓ - averaging coefficient.
Then the space of the Gauss and spatial diffeomorphism invariant states is defined as

H G
Diff := η

(
H G

kin
)
⊂ Cyl∗

[Ashtekar, JL, Marolf, Mourao, Thiemann (1995)]

.

......

H G
Diff is not preserved by any operator of the form Ô(N), because of the lapse functionN .

In case of a scalar constraint operator, this is a serious issue in the treatment of several
questions such as self-adjointness and spectral resolution.
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The Hilbert space H G
vtx

Solution: PRD 91, 044022 (2015) [Arxiv: 1410.5276], JL, Sahlmann
.

......

Construct a (dual) space of ''partially'' diff. invariant states that is preserved by such scalar
constraint operator.

.
Hilbert space of partially Diff. invariant states H G

vtx..

......

Average only w.r.t. diff. that act trivially on the vertices of the graph of a given state,

ψΓ %→
1

nΓ

∑

[ϕ]∈DiffVtx(Γ)/TDiffΓ

⟨U(ϕ)ψΓ| =: η(ψΓ).

The space of the Gauss and partially diff. invariant states is defined as H G
vtx := η

(
H G

kin
)
,

HG
vtx =

⊕

X

HG
X , X ⊂ Σ, |X| < ∞ .

The resulting Hilbert space is preserved by every quantum scalar constraint operator

Ĉ(N) : Hvtx → Hvtx

.

......

The treatment and discussion of the properties of the constraint operator is generalized
from H G

Diff to H G
vtx ;

Ĉ†(N) is densely defined in H G
vtx →; that allows symmetrization.
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Ĉ(N) : Hvtx → Hvtx

.

......

The treatment and discussion of the properties of the constraint operator is generalized
from H G

Diff to H G
vtx ;
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Loop quantum gravity

...1 General relativity in Ashtekar-Barbero variables

...2 LQG framework
LQG Hilbert space & solutions of the kinematical constraints
Implementation of the scalar constraint
Non-symmetric constraint operator: Regularization
Adjoint operator & symmetric constraint operator
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Regularization of the scalar constraint

C(N) =
1

2kβ2

∫

Σ

d3xN(x)

( ϵijkEa
i (x)E

b
j (x)F

k
ab(x)√

| detE(x)|
+

(
1− sβ2)√| detE(x)|R(x)

)
,

....

.

.

.

Euclidean part

.

CE(N) =

∫

Σ

d3xN(x)
ϵijkE

a
i (x)E

b
j (x)F

k
ab(x)√

| detE(x)|

Thiemann's shuffle

sgn(det(e))
ϵijkEa

i (x)Eb
j (x)

√
| detE(x)|

=
2

k
ϵabc{Ak

c (x), V } ;

Fab −→ hαab
;

The loop αab does NOT overlap with the
graph of the state in the regularization;

Tangentiality conditions for the assignment of
a loop at a given node.

....

.

.

.

Lorentzian part

.

CL(N) =

∫

Σ

d3xN(x)
√

| detE(x)|R(x)

Regge's approximation

External regularization;

−→ The curvature operator;
[E.A., M.A., J.L. PRD 89, 124017 (2014), arXiv:1403.3190]
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The Euclidean operator

.

......

choice of a specific coordinate plane (adapted
frame) with a proper routing;
imposition of tangentiality conditions;

.

......

With this prescription
the loop assigned to a pair of edges is unique up to diffeomorphisms;
This prescription makes a loop assigned to a given pair of edges perfectly distinguishable
from any other loop at the same node;

ĈE
ϵ (N)Ψγ ∝

∑

v∈γ

∑

I,J,K

N(v)

Ev
ϵIJKTr

(
h
(l)
αIJ (∆)h

(l)
eK(∆)[h

(l) −1
eK(∆), V̂ ]

)
Ψγ

Ev - averaging coefficient l - arbitrary spin representation.
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Non symmetric scalar constraint operator

....

.

.

.

Euclidean part

.

ĈE(N) := lim
ϵ→0

[
ĈE

ϵ (N)
]∗

Gauge invariant and diff. covariant;

Graph changing without creating vertices;

Preserves H G
vtx ;

Densily defined on H G
vtx .

....

.

.

.

Lorentzian part

.

ĈL(N)Ψγ ∝
∑

v∈γ
eI∩eJ=v

N(v)κv

[
L̂IJ (Êi)

︸ ︷︷ ︸
Length operator

contains V̂ −1

Θ̂IJ (Êi)
]

︸ ︷︷ ︸
Angle operator

∗
Ψγ

Gauge invariant and diff. covariant;

Non-graph changing;

Preserves H G
vtx ;

Densily defined on H G
vtx .

κv - averaging coefficient

.

......

Ĉ(N) := ĈE(N) + (1− sβ2)ĈL(N)

The scalar constraint operator does not create new vertices but new links;
Has a similar action to the scalar constraints in the symmetry reduced cosmological models
The treatment and discussion of the properties of the constraint operator can be performed
directly in H G

vtx ;
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ĈE(N) := lim
ϵ→0

[
ĈE
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The scalar constraint operator does not create new vertices but new links;
Has a similar action to the scalar constraints in the symmetry reduced cosmological models
The treatment and discussion of the properties of the constraint operator can be performed
directly in H G

vtx ;

15 / 21



Symmetric constraint operator

.
Adjoint operator of Ĉ(N)
..

......

At this level we define the operator Ĉ(N) on a dense domain D [Ĉ(N)] in H G
vtx .

To construct a symmetric Hamiltonian operator, we choose to use the adjoint operator Ĉ†(N)
in H G

vtx

Ĉ†(N) : D
[
Ĉ†(N)

]
⊂ H G

vtx −→ H G
vtx

D [Ĉ†(N)] is dense in H G
vtx .

.
Symmetric extensions
..

......

ĈSym(N) := Sym(Ĉ(N), Ĉ†(N))

Typical example: 1
2 (Ĉ(N) + Ĉ†(N))

16 / 21



Symmetric constraint operator

.
Adjoint operator of Ĉ(N)
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..

......

At this level we define the operator Ĉ(N) on a dense domain D [Ĉ(N)] in H G
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Summary, applications

.
Summary
..

......

We have introduced the Hilbert space

HG
vtx =

⊕

{v1,...,vk}
H{v1,...,vk}

which admits quantum volume element, quantum Ricci scalar, quantum scalar constraint
∫

Σ
d3x

√
q̂(x)N(x),

∫

Σ
d3x

√
q̂(x)R̂(x)N(x),

∫

Σ
d3xĈ(x)N(x),

as well as physical observables containing F̂ i
ab .

Solutions to the vacuum constraint

< Ψ|Ĉ(N) = 0

are defined via the spectral decomposition

HG
vtx =

⊕

c

Hc
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Summary, applications

.
Applications
..

......

Gravity deparametrized by a coupled massless scalar field or non-rotating dust amounts to a
quantum theory defined inHG

vtx by the equation

i
d

dt
Ψ = HΨ,

with the Hamiltonian being

H =

∫
d3x

√
−2

√
q̂ Ĉ

or
H = −

∫
d3x Ĉ,

respectively.

[Domagała, Dziendzikowski, JL (2012)], [Assanioussi, JL, Mäkinen (2016)]
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Summary, applications

.
Perturbative dynamics in deparametrized models
..

......

Quantum evolution:

Û(t) := exp[−itĤ] , Ĥ = f(β)

(
ĈL +

1

1 + β2
ĈE

)

Transition amplitudes: Aij(t) = ⟨Ψj | Û(t) |Ψi⟩
Quantum observables: ⟨O(t)⟩
Perturbation theory for the dynamics:

Ĥ0 := ĈL , V̂ := ĈE , ϵ := −
1

1 + β2

Ĥ = f(β)(Ĥ0 + ϵV̂ ) , |ϵ| ≪ 1 ⇔ β2 ≫ 1

−→ Aij(t) = A (0)
ij (t) + ϵ A (1)

ij (t) + ϵ2 A (2)
ij (t) + . . .

[M. Assanioussi, J. Lewandowski and I. Mäkinen (2017)]
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Summary, applications

.
Rainbow gravity
..

......

Quantization of matter and gravity: Schroedinger-like equation

−i! d

dt
Ψ =

[
Ĥo −

1

2

(
Ĥ−1

o ⊗ π̂2
k + Ω̂(k,m)⊗ φ̂2k

)]
Ψ

−→ Ψ = Ψo ⊗ ϕ, where ϕ ∈ L2(R, dφk) and Ψo ∈ HG evolves via Schroedinger-like
equation −idΨo/dt = ĤoΨo. This being the case, we can trace away the gravitational part
and obtain an equation for the matter part only:

i! d

dt
ϕ = Ĥ fun

k ϕ , Ĥ fun
k :=

1

2

[
⟨Ψo|Ĥ−1

o |Ψo⟩π̂2
k + ⟨Ψo|Ω̂(k,m)|Ψo⟩φ̂2k

]

On the other hand, constructing regular QFT on such a Robertson-Walker type spacetime, one
obtains for mode k of φ:

i! d

dt
ϕ = Ĥeff

k⃗,m
ϕ , Ĥeff

k⃗,m
:=

1

2

[
N̄

ā3
π̂2
k +

N̄

ā3
(k2ā4 +m2ā6)φ̂2k

]

In other words, we can replace the fundamental theory described with regular QFT on curved
spacetime, provided that the terms in the two Hamiltonians, fundamental and effective, match.
[M. Assanioussi, A. Dapor and J. Lewandowski (2015)]

Thank you!
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Thank you



The scalar field deparamtrizes a space 
dimension  rather than time  

Z
d

3
xN(x)

q
'̂a(x)'̂b(x)Êa

i (x)Ê
b
i (x)  � =⌦|' >

8⇡�`pl ( )
X

e

p
je(je + 1)

Z

e
N |d'|  � ⌦|' >

e - runs through the set of the edges (links) of the 
spin-network �
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