Ivan Dimitrijevio

Cosmological perturbations in nonlocal gravity

Ivan Dimitrijevic

University of Belgrade, Faculty of Mathematics

22.09.2017

Nonlocal Modified Gravity

Cosmological perturbations in nonlocal gravity

Ivan Dimitrijevic

Our action is given by

$$S = rac{1}{16\pi G} \int \Big(R - 2\Lambda + R^p \mathcal{F}(\Box) R^q \Big) \sqrt{-g} \mathrm{d}^4 x$$

where
$$\Box = \frac{1}{\sqrt{-g}} \partial_{\mu} \sqrt{-g} g^{\mu\nu} \partial_{\nu}$$
, $\mathcal{F}(\Box) = \sum_{n=0}^{\infty} f_n \Box^n$.
We use Friedmann-Lemaître-Robertson-Walker (FLRW) metric

$$ds^{2} = -dt^{2} + a^{2}(t) \left(\frac{dr^{2}}{1-kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right), \ k \in \{-1, 0, 1\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Equations of motion

Cosmological perturbations in nonlocal gravity

Ivan Dimitrijevio

Equation of motion are

$$\begin{aligned} &-\frac{1}{2}g_{\mu\nu}R^{p}\mathcal{F}(\Box)R^{q}+R_{\mu\nu}W-K_{\mu\nu}W+\frac{1}{2}\Omega_{\mu\nu}=-(G_{\mu\nu}+\Lambda g_{\mu\nu}),\\ &\Omega_{\mu\nu}=\sum_{n=1}^{\infty}f_{n}\sum_{l=0}^{n-1}\left(g_{\mu\nu}\nabla^{\alpha}\Box^{l}R^{p}\nabla_{\alpha}\Box^{n-1-l}R^{q}\right.\\ &-2\nabla_{\mu}\Box^{l}R^{p}\nabla_{\nu}\Box^{n-1-l}R^{q}+g_{\mu\nu}\Box^{l}R^{p}\Box^{n-l}R^{q}),\\ &K_{\mu\nu}=\nabla_{\mu}\nabla_{\nu}-g_{\mu\nu}\Box,\\ &W=pR^{p-1}\mathcal{F}(\Box)R^{q}+qR^{q-1}\mathcal{F}(\Box)R^{p}.\end{aligned}$$

Trace and 00-equations

Cosmological perturbations in nonlocal gravity

Ivan Dimitrijevic

In case of FRW metric there are two linearly independent equations. The most convenient choice is trace and 00 equations:

$$\begin{aligned} &-2R^{p}\mathcal{F}(\Box)R^{q}+RW+3\Box W+\frac{1}{2}\Omega=R-4\Lambda,\\ &\frac{1}{2}R^{p}\mathcal{F}(\Box)R^{q}+R_{00}W-K_{00}W+\frac{1}{2}\Omega_{00}=\Lambda-G_{00},\\ &\Omega=g^{\mu\nu}\Omega_{\mu\nu}. \end{aligned}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cosmological perturbations in nonlocal gravity

Ivan Dimitrijevic

Let
$$R = R_0 = const$$
 and we obtain

$$6\left(\frac{\ddot{a}}{a}+\left(\frac{\dot{a}}{a}\right)^2+\frac{k}{a^2}\right)=R_0.$$

Cosmological perturbations in nonlocal gravity

lvan Dimitrijevic

Let
$$R = R_0 = const$$
 and we obtain

$$6\left(\frac{\ddot{a}}{a}+\left(\frac{\dot{a}}{a}\right)^2+\frac{k}{a^2}\right)=R_0.$$

Change of variable $b(t) = a^2(t)$ implies

 $3\ddot{b}-R_0b=-6k.$

Depending on the sign of the scalar curvature R_0 we obtain the following solutions for b(t)

$$\begin{array}{ll} R_0 > 0 & b(t) = \frac{6k}{R_0} + \sigma e^{\sqrt{\frac{R_0}{3}}t} + \tau e^{-\sqrt{\frac{R_0}{3}}t} \\ R_0 = 0 & b(t) = -k^2 t + \sigma t + \tau \\ R_0 < 0 & b(t) = \frac{6k}{R_0} + \sigma \cos \sqrt{\frac{-R_0}{3}}t + \tau \sin \sqrt{\frac{-R_0}{3}}t \end{array}$$

Cosmological perturbations in nonlocal gravity

Ivan Dimitrijevic

Since $R = R_0 = const$ trace and 00 equations are simplified to

$$f_0 R_0^{p+q-1}(p+q-2) = R_0 - 4\Lambda,$$

$$f_0 R_0^{p+q-1}(\frac{1}{2}R_0 + (p+q)R_{00}) = \Lambda - G_{00}.$$

Cosmological perturbations in nonlocal gravity

Ivan Dimitrijevic

Since $R = R_0 = const$ trace and 00 equations are simplified to

$$f_0 R_0^{p+q-1}(p+q-2) = R_0 - 4\Lambda,$$

$$f_0 R_0^{p+q-1}(\frac{1}{2}R_0 + (p+q)R_{00}) = \Lambda - G_{00}.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The system has a solution iff

$$R_0^{p+q-1}(R_0+4R_{00})(R_0+(2\Lambda-R_0)(p+q))=0.$$

note that R_{00} is expressed in terms of b(t) as

$$R_{00} = -\frac{3\ddot{a}}{a} = \frac{3((\dot{b})^2 - 2b\ddot{b})}{4b^2}$$

Cosmological perturbations in nonlocal gravity

Ivan Dimitrijevic

In the first case, condition $R_0 + 4R_{00} = 0$ yields restrictions on values of parameters σ and τ :

$$\begin{aligned} R_0 &> 0 & 9k^2 = R_0^2 \sigma \tau, \\ R_0 &= 0 & \sigma^2 + 4k\tau = 0, \\ R_0 &< 0 & 36k^2 = R_0^2(\sigma^2 + \tau^2) \end{aligned}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Case 1: $R_0 < 0$

Ivan Dimitrijevio

Let
$$k = -1$$
, define φ by $\sigma = \frac{-6}{R_0} \cos \varphi$ and $\tau = \frac{-6}{R_0} \sin \varphi$, then $a(t)$ and $b(t)$ simplifies to

$$b(t) = rac{-12}{R_0} \cos^2 rac{1}{2} (\sqrt{-rac{R_0}{3}}t - arphi), \ a(t) = \sqrt{rac{-12}{R_0}} |\cos rac{1}{2} (\sqrt{-rac{R_0}{3}}t - arphi)|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Case 1: $R_0 < 0$

lvan Dimitrijevic

Let k = -1, define φ by $\sigma = \frac{-6}{R_0} \cos \varphi$ and $\tau = \frac{-6}{R_0} \sin \varphi$, then a(t) and b(t) simplifies to

$$b(t) = \frac{-12}{R_0} \cos^2 \frac{1}{2} \left(\sqrt{-\frac{R_0}{3}} t - \varphi \right),$$

$$a(t) = \sqrt{\frac{-12}{R_0}} \left| \cos \frac{1}{2} \left(\sqrt{-\frac{R_0}{3}} t - \varphi \right) \right|$$

Let k = +1 b(t) is transformed into

$$b(t) = \frac{12}{R_0} \sin^2 \frac{1}{2} (\sqrt{-\frac{R_0}{3}t} - \varphi),$$

which is nonpositive, and there is no solutions.

Case 2: $R_0 = 0$

Ivan Dimitrijevio

Let k = 0 then functions a(t) are b(t) constant and we get Minkowski spacetime.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Case 2: $R_0 = 0$

Ivan Dimitrijevio

Let k = 0 then functions a(t) are b(t) constant and we get Minkowski spacetime. Let $k = \pm 1$, then b(t) takes the form

 $b(t) = -k(t - \frac{\sigma}{2k})^2.$

Therefore, if k = 1 there is no solutions, and if k = -1 we have $a(t) = |t + \frac{\sigma}{2}|$.

Case 3: $R_0 > 0$

Cosmological perturbations in nonlocal gravity

Ivan Dimitrijevio

If k = 0 we obtain a solution with constant Hubble parameter. Moreover, if k = +1 we choose φ such that $\sigma + \tau = \frac{6}{R_0} \cosh \varphi$ and $\sigma - \tau = \frac{6}{R_0} \sinh \varphi$. Then

$$b(t) = \frac{12}{R_0} \cosh^2 \frac{1}{2} \left(\sqrt{\frac{R_0}{3}} t + \varphi \right),$$
$$a(t) = \sqrt{\frac{12}{R_0}} \cosh \frac{1}{2} \left(\sqrt{\frac{R_0}{3}} t + \varphi \right).$$

Case 3: $R_0 > 0$

Ivan Dimitrijevio

If k = 0 we obtain a solution with constant Hubble parameter. Moreover, if k = +1 we choose φ such that $\sigma + \tau = \frac{6}{R_0} \cosh \varphi$ and $\sigma - \tau = \frac{6}{R_0} \sinh \varphi$. Then

$$b(t) = \frac{12}{R_0} \cosh^2 \frac{1}{2} \left(\sqrt{\frac{R_0}{3}} t + \varphi \right),$$
$$a(t) = \sqrt{\frac{12}{R_0}} \cosh \frac{1}{2} \left(\sqrt{\frac{R_0}{3}} t + \varphi \right).$$

In the last possibility k = -1, b(t) takes the form

$$\begin{split} b(t) &= \frac{12}{R_0} \sinh^2 \frac{1}{2} (\sqrt{\frac{R_0}{3}} t + \varphi), \\ a(t) &= \sqrt{\frac{12}{R_0}} |\sinh \frac{1}{2} (\sqrt{\frac{R_0}{3}} t + \varphi)| \end{split}$$

Case 4:
$$R_0^{p+q-1}(R_0 + (2\Lambda - R_0)(p+q)) = 0$$

Cosmological perturbations in nonlocal gravity

Ivan Dimitrijevio

If $p + q \ge 1$ then the only solution is $R_0 = 0$. If p + q = 0 there is no solutions. If $p + q \ne 0, 1$ then $R_0 = \frac{2\Lambda(p+q)}{p+q-1}$.

Cosmological perturbations in nonlocal gravity

Ivan Dimitrijevic

Let us consider the case k = 0, $a(t) = e^{\lambda t}$. We introduce the conformal time $d\tau = a(t)dt$, and then $a(\tau) = -\frac{1}{\lambda \tau}$.

$$ds^{2} = a^{2}(\eta) \left(-\mathrm{d}\eta^{2} + \mathrm{d}x^{2} + \mathrm{d}y^{2} + \mathrm{d}z^{2} \right)$$

Cosmological perturbations in nonlocal gravity

lvan Dimitrijevio

We take the scalar perturbations of the metric in the form $\hat{g}_{\mu
u}=g_{\mu
u}+h_{\mu
u}$

$$h_{\mu\nu} = \mathsf{a}(\eta)^2 \begin{pmatrix} -2\phi & -(\nabla B)^T \\ -\nabla B & -2\psi Id + 2 \operatorname{Hess} E \end{pmatrix}$$

• ϕ , ψ , B and E depend on η , x, y, z.

gauge transformation can make any two of those functions vanish.

gauge invariant variables (Bardeen potentials) $\Phi = \phi - \frac{a'}{a}(B + E') - (B' + E''), \ \Psi = \psi + \frac{a'}{a}(B + E'),$

Perturbation of the scalar curvature takes the form

$$\hat{R} = R + \delta R,$$

 $\delta R = -R_{\mu
u}h^{\mu
u} + (
abla_{\mu}
abla_{
u} - g_{\mu
u}\Box)h^{\mu
u}.$

Cosmological perturbations in nonlocal gravity

Ivan Dimitrijevic

Perturbations of the equations of motion up to linear order take form

$$-m^2\delta G^{\mu}_{\nu}+(R^{\mu}_{\nu}-K^{\mu}_{\nu})v(\Box)\delta R=0,$$

where $m^2 = 2 + 2f_0(\mathcal{G}'\mathcal{H} + \mathcal{H}'\mathcal{G})$ i $v(\Box) = -2(\mathcal{G}''\mathcal{H} + \mathcal{H}''\mathcal{G})f_0 + 2\mathcal{G}'\mathcal{H}'\mathcal{F}(\Box).$

Trace of the pervious equation is

$$[m^2 + (R + 3\Box)v(\Box)]\delta R = \mathcal{U}(\Box)\delta R = 0.$$

To solve the trace equation we use Weierstrass factorization theorem

$$\mathcal{U}(\Box)\delta R = \prod_{i} (\Box - \omega_{i}^{2})e^{\gamma(\Box)}\delta R = 0,$$

where ω_i^2 are the roots of the equation $\mathcal{U}(\omega^2) = 0$ and $\gamma(\Box)$ is entire function. Moreover, we assume that there is no multiple roots.

Cosmological perturbations in nonlocal gravity

lvan Dimitrijevic

Roots ω_i^2 are obtained as solutions of the eigenvalue problem

$$(\Box - \omega_i^2)\delta R = 0.$$

Eigenfunctions that correspond to eigenvalue ω_i^2 are denoted δR_i . General solution for δR is the sum over all values of ω_i^2 ie. $\delta R = \sum_i \delta R_i$. Eigenfunctions take the form

$$\delta R_i = (-k\tau)^{3/2} \left(C_{1i} J_{\nu_i}(-k\tau) + C_{2i} Y_{\nu_i}(-k\tau) \right),$$

where J, Y are Bessel functions of the first and second kind resectively and $\nu_i = \sqrt{\frac{9}{4} - \frac{\omega_i^2}{H^2}}$.

Bardeen potentials

Cosmological perturbations in nonlocal gravity

Ivan Dimitrijevio

Bardeen potentials are derived from the following equations

$$-m^{2}(\Phi - \Psi) + \nu(\Box)\delta R = 0,$$

$$\delta R + (R + 3\Box)(\Phi - \Psi) = 0.$$

Then Bardeen potentials take the form

$$\Phi + \Psi = \eta (c_1(\cos(\eta) + \eta \sin(\eta)) + c_2(-\eta \cos(\eta) + \sin(\eta))) ,$$

$$\Phi - \Psi = \frac{1}{m^2} \sum_i v(\omega_i^2) \delta R_i,$$

where $\eta = \frac{k\tau}{\sqrt{3}}$.

Cosmological perturbations in nonlocal gravity

lvan Dimitrijevic

Asymptotic behavior of the Bessel function implies that Bardeen potentials are bounded if

 $\Re
u < rac{3}{2}.$ $R-4\Lambda+f_0R^{p+q}(2-p-q)=0.$

This polynomial equation can be explicitly solved for R if $-3 \le p + q \le 4$. Necessary condition for the solution to be stable is

$$1 + R^{p+q-1}(p+q)(2-p-q)f_0 < 0.$$

Note that if p + q = 0 or p + q = 2 there is no stable solutions. When p + q = 1 the stable solution might exist if $\Lambda < 0$ and $f_0 < 0$.

Ivan Dimitrijevic

Pervious two conditions are reformulated

$$1 - s + u = 0, \qquad 1 + uz < 0,$$

where $s = \frac{4\Lambda}{R}$, z = p + q, $u = f_0 R^{z-1}(2 - z)$. This system is very simple, but does not have clear physical interpretation.

References

Cosmological perturbations in nonlocal gravity

lvan Dimitrijevic

- I. Dimitrijevic : Cosmological solutions in modified gravity with monomial non- locality. Applied Mathematics and Computation, 285:195 203, 2016.
- - I. Dimitrijevic, B. Dragovich, J. Grujic, A. S. Koshelev, and Z. Rakic, Cosmology of modified gravity with a non-local f(R). 2015, [arXiv:1509.04254].
- - I. Dimitrijevic, B. Dragovich, Z. Rakic and J.Stankovic, On Nonlocal Gravity with Constant Scalar Curvature, Publications de l'Institut Mathematique (2017) in review
- I. Dimitrijevic, B. Dragovich, A.S. Koshelev, Z. Rakic and J.Stankovic, Cosmological solutions of a new nonlocal modified gravity, (2017), in preparation

	References
Cosmological perturbations in nonlocal gravity Ivan Dimitrijevic	 I. Dimitrijevic, B. Dragovich, J. Grujic, and Z. Rakic. Some cosmological solu- tions of a nonlocal modified gravity. Filomat,
	 29(3):619628, 2015. I. Dimitrijevic, B. Dragovich, J. Stankovic, A. S. Koshelev, and Z. Rakic. On Nonlocal Modified Gravity and its Cosmological Solutions. Springer Proceedings in Mathematics and Statistics, 191:3551, 2016, [arXiv:1701.02090].

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

Ivan Dimitrijevio

Thank you for your attention!