
Algebraic structures
in exceptional geometry

Martin Cederwall

Based on:
D. Berman, MC, A. Kleinschmidt, D. Thompson, JHEP 1301 (2013) 64 [arXiv:1208.5884];
MC, J. Edlund, A. Karlsson, JHEP 1307 (2013) 028 [arXiv:1302.6736];
MC, JHEP 1307 (2013) 025 [arXiv:1302.6737];
D.S. Berman, MC, M.J. Perry, JHEP 1409 (2014) 066 [arXiv:1401.1311];
MC, JHEP 1409 (2014) 070 [arXiv:1402.2513];
MC, Fortsch. Phys. 62 (2014) 942 [arXiv:1409.4463];
MC, J. Palmkvist, JHEP 1508 (2015) 036 [arXiv:1503.06215];
MC, J.A. Rosabal, JHEP 1507 (2015) 007 [arXiv:1504.04843];
MC, JHEP 1606 (2016) 006 [arXiv:1603.04684];
G. Bossard, MC, A. Kleinschmidt, J. Palmkvist, H. Samtleben, arXiv:1708.08936;
L. Carbone, MC, J. Palmkvist, to appear;
D. Berman, MC, C. Strickland-Constable, work in progress;
D. Berman, MC, E. Malek, work in progress;
MC, J. Palmkvist, work in progress;

and work by others (Hull, Hohm, Palmkvist, Samtleben, Zwiebach,...)

9th M ∩ Φ meeting
Belgrade, Sept 22, 2017



Background

Duality symmetries in string theory/M-theory mix gravitational

and non-gravitational fields. Manifestation of such symmetries

calls for a generalisation of the concept of geometry.

It has been proposed that the compactifying space (torus) is en-

larged to accommodate momenta (representing momenta and brane

windings) in modules of a duality group.

This leads to double geometry

in the context of T-duality [Hull et al.; Hitchin;...]

and exceptional geometry

in the context of U-duality, [Hull; Berman et al.; Coimbra et al.;...]

The duality group is “present” already in the uncompactified the-

ory. It becomes “geometrised”.



In the present talk, I will

• Describe the basics of extended geometry, with focus on the gauge

transformations;

• Describe the appearance of Borcherds superalgebras and Cartan-

type superalgebras (tensor hierarchy superalgebras);

• Indicate why L∞ algebras provide a good framework for describing

the gauge symmetries.

I.e., more focus on algebraic aspects, and less on geometric...



Compactify from 11 to 11− n dimensions on Tn. As is well known, all fields

and charges fall into modules of En(n).

n En(n)

3 SL(3)× SL(2)

4 SL(5)

5 Spin(5, 5)

6 E6(6)

7 E7(7)

8 E8(8)

9 E9(9)

n

1 2 n−4 n−3 n−2 n−1
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I will focus mainly on internal diffeomorphisms, and how they generalise. The

ordinary diffeomorphisms go together with gauge transformations for the 3-

form and (dual) 6-form fields (and for high enough n also gauge transforma-

tions for dual gravity, etc.) in an En(n) module R1. This is the “coordinate

module”. The derivative transforms in R1.



Compactify from 11 to 11− n dimensions on Tn. As is well known, all fields

and charges fall into modules of En(n).

n En(n) R1

3 SL(3)× SL(2) (3,2)

4 SL(5) 10

5 Spin(5, 5) 16

6 E6(6) 27

7 E7(7) 56

8 E8(8) 248

9 E9(9) fund

n

1 2 n−4 n−3 n−2 n−1

R1 = R(λ1)



Example: E7

Gauge parameters ξM in 56 of E7:

ξm λmn λ̃mnpqr ξ̃m,n1...n7 ← ξM

7 + 21 + 21 + 7 = 56

Fields in E7(7)/K(E7(7)) = E7(7)/(SU(8)/Z2). Dimension of coset:

133− 63 = 70. Parametrised by

gmn Cmnp C̃mnpqrs ← GMN

28 + 35 + 7 = 70

From the point of view of N = 8 supergravity in D = 4, this is

the scalar field coset. Now it becomes a generalised metric.

There are also mixed fields (generalised graviphotons): 1-forms in

R1, etc.



The situation for T-duality is simpler.

Compactification from 10 to 10 − d dimensions give the (contin-

uous) T-duality group O(d, d). The momenta are complemented

with string windings to form the 2d-dimensional module (cf. talks

by Lj. Davidović and by D- . Minić).



The situation for T-duality is simpler.

Compactification from 10 to 10 − d dimensions give the (contin-

uous) T-duality group O(d, d). The momenta are complemented

with string windings to form the 2d-dimensional module (cf. talks

by Lj. Davidović and by D- . Minić).

Note that the duality group is not to be seen as a global symmetry.

Discrete duality transformations in O(d, d;Z) or En(n)(Z) should
arise as symmetries in certain backgrounds, just as the mapping

class group SL(n;Z) arises as discrete isometries of a torus.

The rôle of the continuous versions of the duality groups should

be analogous to that of GL(n) in ordinary geometry (gravity).



Generalised diffeomorphisms

One has to decide how tensors transform.

The generic recipe is to mimic the Lie derivative for ordinary

diffeomorphisms:

LUV
m = Un∂nV

m − ∂nU
mV n

↑ ↑
transport term gl transformation
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Generalised diffeomorphisms

One has to decide how tensors transform.

The generic recipe is to mimic the Lie derivative for ordinary

diffeomorphisms:

LUV
m = Un∂nV

m − ∂nU
mV n

↑ ↑
transport term gl transformation

In the case of U-duality, the role of GL is assumed by En(n)×R+,

and
LUV

M = LUV
M + Y MN

PQ∂NUPV Q

= UN∂NV M + ZMN
PQ∂NUPV Q

↑ ↑
transport term en(n) ⊕ R transformation

where ZMN
PQ = −αnP

M
adjQ,

N
P + βnδ

M
Q δNP = Y MN

PQ − δMP δNQ .



The transformations form an “algebra” for n ≤ 7:

[LU ,LV ]W
M = L[U,V ]W

M

where the “Courant bracket” is [U, V ]M = 1
2 (LUV

M −LV U
M ),

provided that the derivatives fulfil a “section condition”.

The section condition ensures that fields locally depend only on

an n-dimensional subspace of the coordinates, on which a GL(n)

subgroup acts. It reads Y MN
PQ∂M . . . ∂N = 0, or

(∂ ⊗ ∂)|R2
= 0

For n ≥ 8 more local transformations emerge.



(∂ ⊗ ∂)|
R2

= 0

n R1 R2

3 (3,2) (3,1)

4 10 5

5 16 10

6 27 27

7 56 133

8 248 1⊕ 3875

n

1 2 n−4 n−3 n−2 n−1

R2 = R(λn−1)



The interpretation of the section condition is that the momenta locally are

chosen so that they may span a linear subspace of cotangent space with

maximal dimension, such that any pair of covectors p, p′ in the subspace

fulfil (p⊗ p′)|
R2

= 0.
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The corresponding statement for double geometry is ηMN∂M ⊗ ∂N = 0,

where η is the O(d, d)-invariant metric. The maximal linear subspace is a d-

dimensional isotropic subspace, and it is determined by a pure spinor Λ. Once

a Λ is chosen, the section condition can be written ΓMΛ∂M = 0.

An analogous linear construction can be performed in the exceptional setting.

The section condition in double geometry derives from the level matching

condition in string theory.



The interpretation of the section condition is that the momenta locally are

chosen so that they may span a linear subspace of cotangent space with

maximal dimension, such that any pair of covectors p, p′ in the subspace

fulfil (p⊗ p′)|
R2

= 0.

The corresponding statement for double geometry is ηMN∂M ⊗ ∂N = 0,

where η is the O(d, d)-invariant metric. The maximal linear subspace is a d-

dimensional isotropic subspace, and it is determined by a pure spinor Λ. Once

a Λ is chosen, the section condition can be written ΓMΛ∂M = 0.

An analogous linear construction can be performed in the exceptional setting.

The section condition in double geometry derives from the level matching

condition in string theory.

Locally, supergravity is recovered. Globally, non-geometric solutions are also

obtained.



There is a universal form of the generalised diffeomorphisms for any Kac–

Moody algebra and choice of coordinate representation.

Let the coordinate representation be R(λ) (for λ a fundamental weight). Then

σY = −ηABTA ⊗ TB + (λ, λ) + σ − 1 ,

where η is the Killing metric and σa⊗ b = b⊗ a.

This follows from the existence of a solution to the section constraint in the

form of a linear space:

• Each momentum must be in the minimal orbit. Equivalently, p⊗ p ∈ R(2λ).

• Products of different momenta may contain R(2λ) and R(2λ− α), where

R(2λ− α) is the highest representation in the antisymmetric product.

Expressing these conditions in terms of the quadratic Casimir gives Y .



Extended geometry

I will skip the detailed description of the generalised gravity. It ef-

fectively provides the local dynamics of gravity and 3-form, which

are encoded by a vielbein EM
A in the coset (En(n)×R)/K(En(n)).

n En(n) K(En(n))

3 SL(3)× SL(2) SO(3)× SO(2)

4 SL(5) SO(5)

5 Spin(5, 5) (Spin(5)× Spin(5))/Z2

6 E6(6) USp(8)/Z2

7 E7(7) SU(8)/Z2

8 E8(8) Spin(16)/Z2

9 E9(9) K(E9(9))



The T-duality case is described by a generalised metric or vielbein in the coset

O(d, d)/(O(d)×O(d)), parametrised by the ordinary metric and B-field.
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With some differences from ordinary geometry, one can go through the con-

struction of connection, torsion, metric compatibility &c., and arrive at gen-

eralised Einstein’s equations encoding the equations of motion for all fields.

(Done for n ≤ 8.)
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For n ≥ 8, the coset En(n)/K(En(n)) contains higher mixed tensors that

do not carry independent physical degrees of freedom. They are removed

by “extra” local transformations that arise in the commutator between gen.

diffeomorphisms. [Hohm, Samtleben 2014; MC, Rosabal 2015]

[Bossard, MC, Kleinschmidt, Palmkvist, Samtleben 2017]
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For n ≥ 8, the coset En(n)/K(En(n)) contains higher mixed tensors that

do not carry independent physical degrees of freedom. They are removed

by “extra” local transformations that arise in the commutator between gen.

diffeomorphisms. [Hohm, Samtleben 2014; MC, Rosabal 2015]

[Bossard, MC, Kleinschmidt, Palmkvist, Samtleben 2017]

One may introduce (local) supersymmetry. In the case of T-duality, the su-

perspace is based on the fundamental representation of an orthosymplectic

supergroup OSp(d, d|2s). The exceptional cases are unexplored, but will be

based on ∞-dimensional superalgebras. [MC 2016]



Reducibility and Borcherds superalgebras

The generalised diffeomorphisms do not satisfy a Jacobi identity. On general

grounds, it can be shown that the “Jacobiator”

[[U, V ],W ] + cycl ̸= 0 ,

but is proportional to ([U, V ],W ) + cycl, where (U, V ) = 1
2
(LUV + LV U).

It is important to show that the Jacobiator in some sense is trivial. It turns

out that L(U,V )W = 0 (for n ≤ 7), and the interpretation is that it is a

gauge transformation with a parameter representing reducibility (for n ≤ 6).

In double geometry, this reducibility is just the scalar reducibility of a gauge

transformation: δB2 = dλ1, with the reducibility δλ1 = dλ′
0.

In exceptional geometry, the reducibility turns out to be more complicated,

leading to an infinite (but well defined) reducibility, containing the modules

of tensor hierarchies, and providing a natural generalisation of forms (having

connection-free covariant derivatives).



The reducibility continues, and there are ghosts at all levels > 0. The repre-

sentations are those of a “tensor hierarchy”, the sequence of representations

Rn of n-form gauge fields in the dimensionally reduced theory.

R1
∂←− R2

∂←− R3
∂←− . . .

Example, n = 5:

16
∂←− 10

∂←− 16
∂←− 45

∂←− 144
∂←− . . .



The reducibility continues, and there are ghosts at all levels > 0. The repre-

sentations are those of a “tensor hierarchy”, the sequence of representations

Rn of n-form gauge fields in the dimensionally reduces theory.

R1
∂←− R2

∂←− R3
∂←− . . .

Example, n = 5:

16
∂←− 10

∂←− 16
∂←− 45

∂←− 144
∂←− . . .

16− 10 + 16− 45 + 144− . . . = 11 ,

(suitably regularised) which is the number of degrees of freedom of a pure

spinor.



The representations {Rn}∞n=1 agree with

• The ghosts for a “pure spinor” constraint (a constraint implying

an object lies in the minimal orbit);

• The positive levels of a Borcherds superalgebra B(En).

0 1 2 n−4 n−3 n−2 n−1

n

Indeed, the denominator appearing in the denominator formula for

B(En) is identical to the partition function of a “pure spinor”.

[MC, Palmkvist 2015]

B(Dn) ≈ osp(n, n|2)

B(An) ≈ sl(n+ 1|1)



. . .
∂←− R−1

∂←− R0
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∂←− R2
∂←− . . .

∂←− R8−n︸ ︷︷ ︸
covariant

∂←− R9−n
∂←− R10−n

∂←− . . .

The modulesR1, . . . , R8−n behave like forms. The “exterior deriva-

tive” is connection-free (for a torsion-free connection), and there

is a wedge product.

[MC, Edlund, Karlsson 2013]
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“Symmetry”: R9−n = Rn.

There is another extension to negative levels that respects this

symmetry, and seems more connected to geometry: tensor hierar-

chy algebras.

[Palmkvist 2013]



Cartan-type superalgebras

In the classification of finite-dimensional superalgebras by Kac,

there is a special class, “Cartan-type superalgebras”.

The Cartan-type superalgebraW (n), which I prefer to callW (An−1),

is asymmetric between positive and negative levels, and (there-

fore) not defined through generators corresponding to simple roots

and Serre relations.



W (An−1) is the superalgebra of derivations on the superalgebra of

(pointwise) forms in n dimensions.

Any operation ω → Ω ∧ ıV ω, where Ω is a form and V a vector,

belongs to W (An−1). A basis is given by

level = 1 ıa

0 ebıa

−1 eb1eb2 ıa

−2 eb1eb2eb3 ıa

. . . . . .

A subalgebra S(An−1) contains traceless tensors.

The positive levels agree with B(An−1) ≈ sl(n|1)



In spite of the absence of a Cartan involution, there is a way to

give a systematic Chevalley–Serre presentation of the superalge-

bra, based on the same Dynkin diagram as the Borcherds super-

algebra.

g

[Carbone, MC, Palmkvist 2017 (in prep.)]

Note that the representations of torsion and torsion Bianchi iden-

tity appear at levels −1 and −2.

The construction can be extended to W (Dn), and, most interest-

ingly, W (En) (and the corresponding S(g)).

The statements about torsion and Bianchi identities remain true

(but we still lack a geometric argument).



L∞ algebra

Back to the Jacobi identity. Expressed in terms of a fermionic

ghost in R1,

[[c, c], c] ̸= 0

How is this remedied? The most general formalism for gauge sym-

metries is the Batalin–Vilkovisky formalism, where everything is

encoded in the master equation (S, S) = 0.

If transformations are field-independent, one may consider the

ghost action consistently. An L∞ algebra is a (super)algebraic

structure which provides a perturbative solution to the master

equation.

If C denotes all ghosts, then the master equation states the nilpo-

tency of a transformation

δC = (S,C) = ∂C + [C,C] + [C,C,C] + [C,C,C,C] + . . .



The identities that need to be fulfilled are:

∂2C = 0 ,

∂[C,C] + 2[∂C,C] = 0 ,

∂[C,C,C] + 2[[C,C], C] + 3[∂C,C,C] ,

. . .

Assuming ∂c = 0, the non-vanishing of [[c, c], c] can be compen-

sated by the derivative of an element in R2 (representing reducibil-

ity). One needs to introduce a 3-bracket

[c, c, c] ∈ R2 .

Then, there are more identities to check.



For double field theory, a 3-bracket is enough. [Hohm, Zwiebach 2017]

For exceptional field theory, there are signs, that one will in fact

obtain arbitrarily high brackets. There are also other issues con-

cerning the non-covariance outside the “form window”. I will not

go into detail. [Berman, MC, Strickland-C, in progr.]



Mathematical connection

The area has rich connections to various areas of pure mathemat-

ics, some of which are under investigation:

• Group theory and representation theory

• Minimal orbits

• Superalgebras

• Cartan-type superalgebras

• Infinite-dimensional (affine, hyperbolic,...) Lie algebras

• Geometry and generalised geometry

• Automorphic forms

• L∞ algebras

• ...



Open questions

• Can the formalism be continued to n > 9? The transformations

work for E9, and there seems to be no reason (other than math-

ematical difficulties) that it stops there. Is there a connection to

the “E10 proposal” with emergent space?

• Geometry from algebra? What is the precise geometric relation

between the tensor hierarchy algebra and the generalised diffeo-

morphisms?

• Superspace/supergeometry? And some formalism generalising that

of pure spinor superfields, that manifests supersymmetry?

• The section condition: Can it be lifted, or dynamically generated?

• What can be learned about the full string theory / M-theory?

• . . .

Thank you!


