Cycles Cohomology by Integral Transforms in Derived Geometry to Ramified Field Theory

Prof. DR. FRANCISCO BULNES

MATHPHYS_9, BELGRADE, SERBIA

Theorem 4.1. One meromorphic extension of one flat connection given through a Hitchin construction we can give the following commutative co-cycles diagram to the category $M_{\mathcal{K}_F}(\hat{\mathfrak{g}}, Y)$,

 $\mathbf{h}\epsilon H^{0}(T^{\vee}Bun_{G}, \mathcal{D}^{s}) \xrightarrow{d} H^{1}(T^{\vee}Bun_{G}, \mathcal{O}) \xrightarrow{\cong} \Omega^{1}[\mathbf{H}]$ $\cong \downarrow \qquad \cong_{\Phi\mu} \downarrow \qquad \qquad \downarrow \pi$ $a\epsilon \mathbb{C}[Op_{L_{G}}] \xrightarrow{d} \qquad \Omega^{1}[\mathcal{O}_{Op_{L_{G}}}] \xrightarrow{d} C \times B \qquad (4)$

[F. Bulnes, TMA, UK, 2017]

We establish the following hypothesis: 1. Adequated Moduli Problem:

Theorem 3.1. (F. Bulnes) [5]. If we consider the category $M_{\mathcal{K}_F}(\hat{\mathfrak{g}}, Y)$, then a scheme of their spectrum $V_{critical}^{Def}$, where Y, is a Calabi-Yau manifold comes given as:

$$Hom_{\hat{\mathfrak{g}}}(X, V_{critical}^{Def}) \cong Hom_{Loc_{L_G}}(V_{critical}, M_{\mathcal{K}_F}(\hat{\mathfrak{g}}, Y)), \tag{1}$$

Proof. [5].

[F. Bulnes, PAMJ, 2014, F. BULNES, TMA, 2015] 2. Extension of Commutative Rings:

Theorem 3.2. The Yoneda algebra $Ext_{\mathcal{D}^s(Bun_G)}(\mathcal{D}^s, \mathcal{D}^s)$, is abstractly A_{∞} isomorphic to $Ext^{\bullet}_{Loc_{L_G}}(\mathcal{O}_{Op_{L_G}}, \mathcal{O}_{Op_{L_G}})$.

Proof.[6],[7].

Formal Deformations of Sheaves can extended to deformation of categories to QFT

4. Twisted Nature of the Derived Categories *D* × on an appropriate stack:

Lemma (F. Bulnes) 3. 1. Twisted derived categories corresponding to the algebra of functions $\mathbb{C}[Op_{L_G}(D^{\times})]$, are the images obtained by the composition $\mathcal{P}(\tau)$, on $\tilde{\mathcal{L}}_{\lambda}, \forall \lambda \epsilon \mathfrak{h}^*$, and such that their Penrose transform is:

 $\mathcal{P}: H^0({}^LG, \Gamma(Bun_G, \mathcal{D}^{\times})) \cong Ker(U, \tilde{\mathcal{D}}_{\lambda, y}),$ (2)

[F. Bulnes, ILIRIAS ZbMATH, 2014] **NOTE: Here is exhibited the Cohomology Space** $H^{\bullet}(?, \Omega^{\bullet})$, as the space $H^{\bullet}(\mathbf{H}^{\vee}, \Omega^{\bullet})$ [F. Bulnes, TMA, 2016] Inside of quasi-coherent category given by $M_{\mathcal{K}_F}(\hat{\mathfrak{g}}, Y)$ [F. Bulnes, APM, 2013] which carry us to the ramification problem. 5. We consider QFT AND TFT in the Derived Categories frame to define de co-cycles of

 $M_{\mathcal{K}_F}(\hat{\mathfrak{g}}, Y)$

Then field ramifiations are connections of

Proof (Mein Theorem or Theorem 4. 1). First we demonstrate the equality between $R^{1}\chi_{*}(\mathcal{D}^{*})$ and $R^{1}\chi_{*}(\mathbf{h})\epsilon\Omega^{1}[\mathbf{H}]$, (diagram) in the derived

categories class $\mathcal{D}^{ imes}$.

 $R^{1}\chi_{*}$ \longrightarrow \downarrow $H^{0}(\Sigma, \Omega^{1}) \xrightarrow{\Gamma} H^{1}(\Sigma, \Omega^{2}) \xrightarrow{\cong} \Omega^{1}[\mathbf{H}]$ $\cong \downarrow \qquad \cong \downarrow \qquad \downarrow \pi_{\mathbf{H}}$ $\Omega^{1}(\Sigma^{0}, \mathfrak{g}) \xrightarrow{d} \qquad \Omega^{2}(\Sigma, \mathfrak{g}) \qquad \xrightarrow{a} C \times B$

 $\Omega^{\bullet}(Op_{L_G}(D))$

We consider a Langlood correspondence such that: $\Phi^{i}(\mathfrak{c}(\mathcal{O}_{v})) = \mathcal{O}(\mathcal{O}_{v}) \boxtimes \wedge^{i} \mathbb{V}, \text{ arriving to } \Omega^{i}[\mathcal{O}_{p_{L_{G}}}] \text{ which}$ gives the equivalence of complexes: $\{d\mathbf{h}=0\}\cong^{L_{\Phi^{\mu}}}\{da=0\},\$ which required the correspondence $\tilde{\mathfrak{c}}: D_{Coh}(T^{\vee}Bun_G, \mathcal{O}) \cong D_{Coh}({}^{L}T^{\vee}Bun_G, \mathcal{O}),$ [F. Bulnes, scirp, USA, 2016] Then is demonstrated the first decendant $\mathbf{h} \in H^0(T^{\vee}Bun_G, \mathcal{D}^s)$ **Isomorphism:** \simeq $a \in \mathbb{C}[Op_{L_G}]$ NOTE: $\tilde{\mathfrak{c}} = \mathfrak{c}(T^{\vee}\mathcal{O}_{Op_{L_G}}) = \mathfrak{c}(\mathcal{O}_{SPu}^{DG}), \text{ }^{6}\text{ such that } \Phi_{\mathcal{O}_{Spu}}^{DG}(\mathbb{C}_u) \cong \Gamma q_{2!}(\mathcal{O}_{\tilde{\mathcal{N}}}^{L} \otimes_{\mathcal{N}} \mathbb{C}_u).$ [F. Buines, JMSS, 2013]

By Frenkel equivalence:

$$D^{b}(\mathfrak{g}_{\mathcal{KC}} - mod_{nilp})^{I^{0}} \cong D^{b}(\mathcal{QCoh}(MOp_{L_{G}}^{nilp})),$$

Each quasi-coherent sheaf on the kernel of the right side of the before equivalence corresponds an object of $D^b(M_{\kappa_c}(\tilde{\mathfrak{g}},Y))^{I_0}$ then:

a). The functor $\Phi_{\mathcal{O}_{Spu}^{DG}}$ is the Hecke functor. b). It's integral transform such that

 $h: Bun_{Higgs} \to B \text{ (to a quantized))}$

And equivalent to $D_{coh}(^{L}Bun, \mathcal{D})$

Then the geometric Langlands conjecture in terms of Higgs bundles, consider a functor between the categories $D_{coh}({}^{L}Loc, \mathcal{O})$, with the action of the Hecke functors on $D_{coh}({}^{L}Bun, \mathcal{D})$. But $MOp_{L_G}^{nilp} \cong Op_{L_G}^{nilp} \times \tilde{N} / {}^LG$ by Scennberg manifold structure to Langlands Correspondence given by \mathfrak{c} , such that:

 $\tilde{\mathfrak{c}} = \mathfrak{c}(\mathcal{O}_{Sp_{uC}}(\mathbb{V}) \times \mathbb{C}^{\times}), \text{ where } \mathcal{O}_{Sp_{uC}} = \mathcal{O}_{\tilde{\mathcal{N}}} \otimes_{\mathcal{ON}} \mathbb{C}, \text{ and } \mathcal{N} \subset^{\mathcal{L}} \mathfrak{g},$

By K-theory, the Steinberg variety who have Elements $C \times B$, that satisfy:

 $Isom(d\mathbf{h}) = d(da), \forall a \in \mathbb{C}[Op_{L_G}(D)],$

Then is had that: ${d(da)} \stackrel{L_{\Phi^{\mu}}}{\longleftrightarrow} {Isomdh},$

In other words to the kernels of Ω^i , i = 1, 2, ..., are the that are in sheaf $\mathcal{O}_{Op_{L_G}}$, ¹⁰ that is to say, there is an extended Penrose transform such that the kernels set are the fields **h**, with $Isom(d\mathbf{h}) = 0$, in the hyper-cohomology

Then this the hypercohomology in the down line through Hitchin mapping takes the fields d(da) = 0, in the hyper-cohomology $\mathbb{H}(\Omega^1 \xrightarrow{d} \Omega^2 \xrightarrow{d} \dots)$.

In the context of the Differential operators algebra: We can to give the commutative rings diagram:

$$\begin{aligned} H^{\bullet}(\mathfrak{g}[[z]], \mathbb{V}_{critical}) &\to H^{\bullet}(\mathfrak{g}[[z]], \mathfrak{g}, \mathbb{V}_{critical}) \stackrel{\cong}{\longrightarrow} \Omega^{\bullet}[\mathbf{H}] \\ &\cong \downarrow \qquad \cong_{\Phi} \downarrow \qquad \qquad \downarrow \pi \\ \mathbb{C}[Op_{L_G}] \stackrel{d}{\longrightarrow} \qquad \Omega^{\bullet}[Op_{L_G}] \stackrel{d}{\longrightarrow} \qquad \mathbf{H}^{\vee} \end{aligned}$$

Then we have the Penrose transform in the decendant isomorphism whose field solutions are To the equations da = 0. An extended version of Penrose Transform to deformed modules version $H^{\bullet}(\mathfrak{g}[[z]], \mathfrak{g}, \mathbb{V}_{critical})$ consider The deformed Mukai-Fourier transform. Then the Yoneda algebra given by $Ext_{\mathcal{D}^s(Bun_G)}(\mathcal{D}^s, \mathcal{D}^s)$, Can stablish the endomorphism of critial level modules

Then is completed the sequence of critical Verma Modules (projective Harish-Chandra module to Whole sequence), The global functor to the diagram in question until $\Omega^{\bullet}[Op_{L_G}]$ [S: ${}^{L}\Phi^{\mu}(\mathcal{M}) = \mathcal{M} \boxtimes \rho^{\mu}(\mathbb{V}), {}^{12}$ with ${}^{L}\Phi^{\mu}$, a Hecke functor To their Spectrum (in the Hamiltonian variety) We use the quantum cohomology space version: $H^{q}(Bun_{G}\mathcal{D}^{s}) = \mathbb{H}^{q}_{G[[z]]}(\mathbf{G}, (\wedge^{\bullet}[\Sigma^{0}] \otimes \mathbb{V}_{critical}; \partial))$

where $\mathbf{G} := G((z)) / G[[\Sigma^0]]$, (the thick flag variety) where is clear that $\forall \phi \in G((z)), \phi \bullet G[[\Sigma^0]] \in \mathbf{G}$, then the elements of are the elements of $\mathfrak{g}[[z]] / G$, (where we are using directly the theorem 3. 1) which are in terms of graded vector space SpecSymT, the elements of $\mathbb{D}_{coh}({}^LBun, \mathcal{D}^{\times})$, which are included in the quasi-coherent category $M_{\mathcal{K}_F}(\hat{\mathfrak{g}}, Y)$. Finally $Spec_G^{\mathfrak{g}[[z]] / G}(\Omega^1(\mathbf{H})) = Y$.

Example As application to TFT, we consider the commutative diagram where a spectrum given by the theorem 3. 1, is the derived category W(H):

Thanks!!