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Einstein gravity is a beautiful theory which is very well tested in
the Solar system scale. However it indicates some drawbacks in the
other scales. The simplest way to generalize (/modify) it is by
replacing Einstein-Hilbert Lagrangian

R → f (R) = R − 2Λ + γR2 + · · · =
n∑

i=0

γi R
i

by an arbitrary function of the scalar R. Such modification might
be helpful in solving dark matter and dark energy problems .

Here we focus on some cosmological applications presented in
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Introduction I

In the Palatini f (R̂) gravity the action is dependent on a metric
and a torsionless connection as independent variables

S(gµν , Γ
λ
ρσ) = Sg + Sm =

1

2

∫ √
−gf (R̂)d4x + Sm(gµν , ψ), (1)

where R̂(g , Γ) = gµνR̂µν(Γ) is the generalized Ricci scalar and
R̂µν(Γ) is the Ricci tensor of a torsionless connection Γ. EOM are

f ′(R̂)R̂(µν)(Γ)− 1

2
f (R̂)gµν = Tµν , (2)

∇̂α(
√
−gf ′(R̂)gµν) = 0, (3)

where Tµν = − 2√
−g

δLm
δgµν (e.g. PF = (p + ρ)uµuν + pgµν) is EMT,

i.e. assuming that the matter couples minimally to the metric gµν .
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Introduction II
In order to solve equation (3) it is convenient to introduce a new
metric √

−ḡ ḡµν =
√
−gf ′(R̂)gµν (4)

for which the connection Γ = ΓL−C (ḡ) is a Levi-Civita connection.
As a consequence in dim M = 4 one gets

ḡµν = f ′(R̂)gµν , (5)

For this reason one should assume that the conformal factor
f ′(R̂) 6= 0, so it has strictly positive or negative values.
Taking the g−trace of (2), we obtain structural equation

f ′(R̂)R̂ − 2f (R̂) = T . (6)

where T = gµνTµν (= 3p − ρ). Thus, the equation (2) can be
treated both as determining the dynamics of the metric g or ḡ
(two frames !!)
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The eq. (2) can be recast to the following form

R̄µν −
1

4
R̄ ḡµν =

1

f ′(R̂)
(Tµν −

1

4
T gµν). (7)

where R̂µν = R̄µν , R̄ = ḡµνR̄µν = f ′(R̂)−1R̂ and ḡµνR̄ = gµνR̂.
1. non-linear system of second order PDE.
2. for the linear Lagrangian R̂ − 2Λ is fully equivalent to Einstein
R − 2Λ,
3. any f (R̂) vacuum solutions (Tµν = 0) ⇒ Einstein vacuum
solutions with cosmological constant;
4. PF: Tµν = (p + ρ)uµuν + pgµν ⇒
Tµν − 1

4Tgµν = (p + ρ)
(
uµuν + 1

4gµν
)
. Thus DE solutions ≡

vacuum solutions.

Palatini gravity is the first cousin of Einstein theory (next of kin)!!
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The action (1) is dynamically equivalent to the constraint system
with first order Palatini gravitational Lagrangian with the
additional scalar field χ, provided that f

′′
(R̂) 6= 0 (This condition

excludes the linear Einstein-Hilbert Lagrangian f (R̂) = R̂ − 2Λ
from our considerations.)

S(χ, gµν , Γ
λ
ρσ) =

1

2κ

∫
d4x
√
−g
(
f ′(χ)(R̂ − χ) + f (χ)

)
+Sm(gµν , ψ),

(8)
Introducing new scalar field Φ = f ′(χ) and taking into account the
constraint equation χ = R̂, one can rewrite the action in
dynamically equivalent way as a Palatini action

S(Φ, gµν , Γ
λ
ρσ) =

1

2k

∫
d4x
√
−g
(

ΦR̂ − U(Φ)
)

+Sm(gµν , ψ), (9)

where the potential U(Φ) encodes the information about the
function f (R̂) is given by
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Uf (Φ) ≡ U(Φ) = χ(Φ)Φ− f (χ(Φ)) (10)

and Φ = df (χ)
dχ . Thus one has R̂ ≡ χ = dU(Φ)

dΦ . For a given f the
potential U is a (singular) solution of the Clairaut’s differential
equation: U(Φ) = Φ dU

dΦ − f ( dU
dΦ ). (One can observe that the trivial,

i.e. constant, potential U(Φ) corresponds to the linear Lagrangian
f (R̂) = R̂ − 2Λ.) Palatini variation of this action provides

Φ

(
R̂(µν) −

1

2
gµνR̂

)
+

1

2
gµνU(Φ)− κTµν = 0 (11a)

∇̂λ(
√
−gΦgµν) = 0 (11b)

R̂ − U ′(Φ) = 0 (11c)

The last equation due to the constraint R̂ = χ = U ′(φ) is
automatically satisfied. The middle equation (11b) implies that the
connection Γ̂ is a metric connection for the new metric
ḡµν = Φgµν .
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Now the equation (11a), (11c) can be written as a dynamical
equation for the metric ḡµν (R̂µν = R̄µν , R̂ = ΦR̄, gµνR̂ = ḡµνR̄)

R̄µν −
1

2
ḡµνR̄ = κT̄µν −

1

2
ḡµνŪ(Φ) (12a)

ΦR̄ − (Φ2 Ū(Φ))′ = 0 (12b)

where we have introduced Ū(φ) = U(φ)/Φ2 and T̄µν = Φ−1Tµν .
Thus the system (12a) - (12b) corresponds to a scalar-tensor
action for the metric ḡµν and the (non-dynamical) scalar field Φ

S(ḡµν ,Φ) =
1

2κ

∫
d4x
√
−ḡ
(
R̄ − Ū(Φ)

)
+ Sm(Φ−1ḡµν , ψ), (13)

non-minimally coupled to the matter ψ.
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where

T̄µν = − 2√
−ḡ

δ

δḡµν
Sm = (ρ̄+ p̄)ūµūν + p̄ḡµν = Φ−3Tµν , (14)

and ūµ = Φ−
1
2 uµ, ρ̄ = Φ−2ρ, p̄ = Φ−2p, w = w̄

T̄µν = Φ−1Tµν , T̄ = Φ−2T . Further, the trace of (12a), provides

R̄ = 2Ū(Φ)− κT̄ (15)

The equation (12a), due to non-minimal coupling between the
metric ḡµν and the matter, implies eneregy-momentum
non-conservation

∇̄µT̄µν = −1

2
T̄
∂νΦ

Φ
(16)

(however ∇µTµν = 0). In this, so-called Einstein frame case, the
scalar field has no dynamics satisfying algebraic equation (12b).
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By changing the frame (ḡµν ,Φ)→ (gµν ,Φ) one gets that action
for the original Palatini metric within scalar-tensor formulation

S(Φ, gµν) =
1

2κ

∫
d4x
√
−g
(

ΦR +
3

2Φ
∂µΦ∂µΦ− U(Φ)

)
, (17)

where U(Φ) is given as before by (10).
In this case, a kinematical part of the scalar field does not vanish
from the Lagrangian (17). We obtain Brans-Dicke action with the
parameter ωBD = −3

2 in the Jordan frame. In this case equations
of motion take the form (∇µTµν = 0 )

Φ

(
Rµν −

1

2
gµνR

)
− 3

4Φ
gµν∇σΦ∇σΦ +

3

2Φ
∇µΦ∇νΦ

+ gµν�Φ−∇µ∇νΦ +
1

2
gµνU(φ) = κTµν ,

(18a)

R − 3

Φ
�Φ +

3

2Φ2
∇µΦ∇µΦ− 1

2
U ′(Φ) = 0

(18b)
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Cosmological applications I
Assume that the metric g is a spatially flat FLRW metric

ds2 = dt2 − a2(t)
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (19)

where a(t) is the scale factor, t is the cosmic time.
As a source of gravity we assume perfect fluid with the
energy-momentum tensor

Tµ
ν = diag(−ρ(t), p(t), p(t), p(t)), (20)

where p = wρ, w = const is a form of the equation of state
(w = 0 for dust and w = 1/3 for radiation). Formally, effects of
the spatial curvature can be also included to the model by
introducing a curvature fluid ρk = −k

2a
−2, with the barotropic

factor w = −1
3 (pk = −1

3ρk). From the conservation condition

Tµ
ν;µ = 0 we obtain that ρ = ρ0a

−3(1+w). Therefore, trace T reads
as

T = ρ0(3w − 1)a(t)−3(1+w). (21)
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Following further Cosmological Principle we assume that Φ
depends only on the cosmic time. In such a case the metric
ḡµν = Φ(t)gµν is FRW metric as well with a new cosmic time

dt̄ = Φ(t)
1
2 d t and new scale factor ā(t̄) = Φ(t̄)

1
2 a(t̄).

ds̄2 = dt̄2 − ā2(t)
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (22)

Similarly
T̄µ
ν = diag(−ρ̄(t̄), p̄(t̄), p̄(t̄), p̄(t̄)), (23)

where T̄µ
ν = Φ−2Tµν , T̄ = Φ−2T , ρ̄ = Φ−2ρ, p̄ = Φ−2p.

From Einstein equations one gets Friedmann and Raychaudhuri
equations

3H̄2 = ρ̄Φ + ρ̄m, 3
¨̄a

ā
= ρ̄Φ − ρ̄m

where ρΦ = 1
2 Ū(Φ), ρ̄m = ρ0ā

−3Φ
1
2 and non-conservation of the

matter EMT T̄µν
˙̄ρm + 3H̄ ρ̄m = − ˙̄ρΦ

is equivalent to the EOM for Φ: ΦR̄ − (Φ2 Ū(Φ))′ = 0
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We consider visible and dark matter in the form of dust w = 0 and
choose f (R̂) =

∑n
i=0 γi R̂

i including Palatini version of the
Starobinski model with a quadratic Ricci scalar term. Assuming
spatially flat FLRW cosmology with a dust source one gets
Friedmann eq. (H = d ln a

dt ) in the Jordan frame

H2 =
2f ′(3f − f ′R̂)

3
(

2f ′ + 3(2f−R̂f ′)(f ′′)

f ′′R̂−f ′

)2
, (24)

where the prime denotes differentiation with respect to R̂. Because
the form of a function f (R̂) is unknown, one can probe the
simplest modification of general relativity Lagrangian

f (R̂) = −2Λ + R̂ + γR̂2 · · · (+δR̂3) (25)

induced by first three (/four) terms in the power series
decomposition of an arbitrary function f (R).
The Lagrangian (25) can be viewed as a simplest deviation, by the
quadratic Starobinsky term, from the Lagrangian R̂ − 2Λ which
provides the standard cosmological model a.k.a. ΛCDM model.
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It appears that a corresponding solution of the structural equation
(6)

R̂ = 4Λ + ρm,0a
−3 ≡ 4ρΛ,0 + ρm,0a

−3 (26)

The solution (49) is to be plugged into the formula (24) which
generalizes Friedmann equation

H2

H2
0

= Ωm,0a
−3 + ΩΛ,0 (27)

for ΛCDM model. A counterpart of the formula above in our
extended model can be presented as follows
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H2

H2
0

=
b2(

b + d
2

)2
×(

Ωγ(Ωm,0a
−3 + ΩΛ,0)2 (K − 3)(K + 1)

2b
+ Ωm,0a

−3 + ΩΛ,0

)
,

where

K =
3ΩΛ,0

Ωm,0
a−3 + ΩΛ,0, (28)

Ωγ = 3γH2
0 , (29)

b = f ′(R̂) = 1 + 2Ωγ(Ωm,0a
−3 + 4ΩΛ,0), (30)

d =
1

H

db

dt
= −2Ωγ(Ωma

−3 + ΩΛ,0)(3− K ) (31)

The study of this Friedmann equation is a main subject of this talk.
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Cosmological dynamical system of Newtonian type I
Consider general form of Friedmann equations

H2 ≡ ȧ2

a2
= F (a) > 0, (32)

It would be convenient to rewrite (32) it in equivalent form

1

2
ȧ2 + V (a) = 0, (33)

as a zero energy trajector of the Hamiltonian system
H = 1

2 ȧ
2 + V (a), where the potential

V (a) = −1

2
a2F (a) < 0 (34)

This implies Newton type equation

ä = −∂V
∂a

, t =

∫ a da√
−2V (a)

(35)
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Cosmological dynamical system of Newtonian type II
Accordingly the evolution of a universe can be interpreted, in dual
picture, as a motion of a fictitious particle of unit mass in the
potential V (a). The corresponding dynamical system in
two-dimensional phase space (a, x = ȧ)

ȧ = x , (36)

ẋ = −∂V (a)

∂a
. (37)

Phase space portrait consists of all possible trajectories
corresponding to all possible energy levels{

(a, ȧ) :
ȧ2

2
+ V (a) = E ;E ∈ R

}
. (38)

For example for the standard cosmological model (27)

V = −a2

6

(
ρm,0a

−3 + ρΛ,0

)
, (39)
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Cosmological dynamical system of Newtonian type III

In a case of singularitiese on needs theory of piecewise smooth
dynamical systems. Therefore it is assumed that the potential
function, except some isolated (singular) points, belongs to the
class C 2).
Any cosmological model can be identified by its form of the
potential function V (a) depending on the scale factor a. From the
Newtonian form of the dynamical system (36)-(37) one can see
that all critical points correspond to vanishing of r.h.s of the

dynamical system
(
x0 = 0, ∂V (a)

∂a |a=a0

)
. Therefore all critical

points are localized on the x-axis, i.e. they represent a static
universe.
The only admissible critical points are the saddle type if
∂2V (a)
∂a2 |a=a0 < 0 or centres type if ∂2V (a)

∂a2 |a=a0 > 0.
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Cosmological dynamical system of Newtonian type IV

If a form of the potential function is known (from the knowledge of
effective energy density), then it is possible to calculate
cosmological functions in exact form

t =

∫ a da√
−2V (a)

, (40)

H(a) = a−1
√
−2V (a), (41)

a deceleration parameter, an effective barotropic factor

q = −aä

ȧ2
= −1

2

d ln(−V )

d ln a
, (42)

weff(a(t)) =
peff

ρeff
= −1

3

(
d ln(−V )

d ln a
+ 1

)
, (43)
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Cosmological dynamical system of Newtonian type V

a parameter of deviation from de Sitter universe

h(t) ≡ −(q(t) + 1) =
1

2

d ln(−V )

d ln a
(44)

(note that if V (a) = −Λa2

6 , h(t) = 0), effective matter density and
pressure

ρeff = −6V (a)

a2
, (45)

peff =
2V (a)

a2

(
d ln(−V )

d ln a
+ 1

)
(46)

and, finally, a Ricci scalar curvature for the FRW metric (??)

R =
6V (a)

a2

(
d ln(−V )

d ln a
+ 2

)
. (47)
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Polynomial example I

ΩR =
R̂

3H2
0

, Ωγi = 3i−1γiH
2(i−1)
0 ,

Ωtot = Ωm,0a
−3 + ΩΛ,0, b = f ′(R̂) =

n∑
i=1

iΩγi Ω
i−1
R ,

d = −3

(
n∑

i=1

(i − 2)Ωγi Ω
i−1
R +

4ΩΛ

ΩR

)

×
∑n

i=1 i(i − 1)Ωγi Ω
i−1
R∑n

i=1 i(i − 2)Ωγi Ω
i−1
R

. (48)

where H0 is the present value of Hubble function, Ωm,0 = ρm,0

3H2
0

,

ΩΛ,0 =
ρΛ,0

3H2
0

.
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Polynomial example - Jordan frame I

constraints eq.

n∑
i=1

(i − 2)Ωγi Ω
i
R = −Ωm − 4ΩΛ. (49)

Friedmann eq.

H2

H2
0

=
b2(

b + d
2

)2

×

[
1

2b

[
n∑

i=1

Ωγi Ω
i−1
R (ΩR − 2iΩtot) + Ωtot − 3ΩΛ

]
+ Ωtot

]
. (50)



Dynamics of Palatini gravity in different frames Cosmological models based on Palatini f (R̂)-gravity f (R̂) Palatini cosmology Dynamical systems of Newtonian type Singularities in the Starobinsky model in the Palatini formalism Observations Conclusion

Polynomial example - Jordan frame I

V (a) = −H2
0a

2

2

×

[
1

2b

[
n∑

i=1

Ωγi Ω
i−1
R (ΩR − 2iΩtot) + Ωtot − 3ΩΛ

]
+ Ωtot

]
. (51)
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Polynomial example - Einstein frame

S(ḡµν ,Φ) =
1

2

∫
d4x
√
−ḡ
(
R̄ − Ū(Φ)

)
+ Sm(Φ−1ḡµν , ψ) (52)

with non-minimal coupling between Φ and ḡµν

T̄µν = − 2√
−ḡ

δ

δḡµν
Sm = (ρ̄+ p̄)ūµūν + p̄ḡµν = Φ−3Tµν , (53)

ūµ = Φ−
1
2 uµ, ρ̄ = Φ−2ρ, p̄ = Φ−2p, T̄µν = Φ−1Tµν , T̄ = Φ−2T

The metric ḡµν takes the standard FRW form

ds̄2 = −dt̄2 + ā2(t̄)
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (54)

where dt̄ = Φ(t)
1
2 dt and a new scale factor ā(t̄) = Φ(t̄)

1
2 a(t̄).
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Polynomial example - Einstein frame I

In the case of the barotropic matter, the cosmological equations are

3H̄2 = ρ̄Φ + ρ̄m, 6
¨̄a

ā
= 2ρ̄Φ − ρ̄m(1 + 3w) (55)

where

ρ̄Φ =
1

2
Ū(Φ), ρ̄m = ρ0ā

−3(1+w)Φ
1
2

(3w−1) (56)

and w = p̄m/ρ̄m = pm/ρm. In this case, the conservation
equations has the following form

˙̄ρm + 3H̄ ρ̄m(1 + w) = − ˙̄ρΦ. (57)
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Polynomial example - Einstein frame I

and the scalar field Φ has the following form

Φ(R̂) =
df (R̂)

dR̂
=

n∑
i=1

iγi R̂
i−1. (58)

Ū(R̂) = 2ρ̄Φ(R̂) =

∑n
i=1(i − 1)γi R̂

i(∑n
i=1 iγi R̂

i−1
)2
. (59)
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Singularities f (R) = R + γR2 + δR3 model-Jordan frame I

In the model, one finds two types of singularities, which are a
consequence of the Palatini formalism: the freeze and sudden
singularity. The freeze singularity appears when the multiplicative
expression b

b+d/2 , in the Friedmann equation (50), is equal the
infinity. So we get a condition for the freeze singularity:
2b + d = 0 which produces a pole in the potential function. It
appears that the sudden singularity in our model appears when the
multiplicative expression b

b+d/2 vanishes. This condition is
equivalent to the case b = 0.
The freeze type III singularity in our model is a solution of the
algebraic equation

3ΩγΩδΩ
3
R + 9ΩδΩ

2
R + (Ωγ − 36ΩδΩΛ)ΩR − 12ΩγΩΛ− 1 = 0 (60)
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Singularities f (R) = R + γR2 + δR3 model-Jordan frame I

which the following solution

ΩRsing
= Ω−1

γ

[
− 1 +

r(Ωγ ,Ωδ,ΩΛ)

921/3Ωδ

−
21/3

(
−81Ω2

δ + 9ΩγΩδ(Ωγ − 36ΩδΩΛ)
)

9r(Ωγ ,Ωδ,ΩΛ)Ωδ

]
, (61)

where

r(Ωγ ,Ωδ,ΩΛ) =

2
[
243Ω2

γΩ2
δ(1 + 6ΩγΩΛ)− 729Ω3

δ(1 + 6ΩγΩΛ)

+
(

59049
(
Ω2
γ − 3Ωδ

)2
Ω4
δ(1 + 6ΩγΩΛ)2

−
(
81Ω2

δ − 9ΩγΩδ(Ωγ − 36ΩδΩΛ)
)3
)1/2]1/3

. (62)
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Singularities f (R) = R + γR2 + δR3 model-Jordan frame I

For the sudden singularity the condition b = 0 provides the
equation

1 + ΩR [2Ωγ + 3ΩδΩR] = 0. (63)

which has the following solutions

ΩRsing
=
−Ωγ ±

√
Ω2
γ − 3Ωδ

3Ωδ
. (64)
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Singularities in Starobinsky model in Palatini formalism I

2b + d = 0 =⇒ f (K ,ΩΛ,0,Ωγ) = 0 (65)

or

−3K − K

3Ωγ(Ωm + ΩΛ,0)ΩΛ,0
+ 1 = 0, (66)

where K ∈ [0, 3).
The solution of the above equation is

Kfreeze =
1

3 + 1
3Ωγ(Ωm+ΩΛ,0)ΩΛ,0

. (67)

From equation (67), we can find an expression for a value of the
scale factor for the freeze singularity

afreeze =

(
1− ΩΛ,0

8ΩΛ,0 + 1
Ωγ(Ωm+ΩΛ,0)

) 1
3

. (68)
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VHaHtLL 0.00001 0.00002 0.00003 0.00004
t

-0.0015

-0.0010

-0.0005

0.0005

0.0010

aHtL

Figure: Illustration of sewn freeze singularity, when the potential V (a)
has a pole. Diagram of a(t) is constructed from the dynamics in two
disjoint region {a : a < as} and {a : a > as}.
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The sudden (type II) singularity appears when b = 0. This provides
the following algebraic equation

1 + 2Ωγ(Ωm,0a
−3 + ΩΛ,0)(K + 1) = 0. (69)

The above equation can be rewritten as

1 + 2Ωγ(Ωm,0a
−3 + 4ΩΛ,0) = 0. (70)

From equation (70), we have the formula for the scale factor for
the sudden singularity

asudden =

(
− 2Ωm,0

1
Ωγ

+ 8ΩΛ,0

)1/3

. (71)

which, in fact, becomes a (degenerate) critical point and a bounce
at the same time.
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-1. ´ 10-9 -8. ´ 10-10 -6. ´ 10-10 -4. ´ 10-10 -2. ´ 10-10
WΓ

0.0002

0.0004

0.0006

0.0008

asuddsing

Figure: Diagram of the relation between asing and negative Ωγ . Note that
in the limit Ωγ 7→ 0 the singularity overlaps with a big-bang singularity.
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VHaHtLL
-0.0004 -0.0002 0.0002 0.0004

t

-0.002

0.002

0.004

aHtL

Figure: Illustration of a sewn sudden singularity. The model with negative
Ωγ has a mirror symmetry with respect to the cosmological time. Note
that the spike on the diagram shows discontinuity of the function ∂V

∂a .
Note the existence of a bounce at t = 0.
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It is also interesting that trajectories in neighbourhood of straight
vertical line of freeze singularities undergo short time inflation
x = const. The characteristic number of e-foldings from tinit to tfin

of this inflation period

N = Hinit(tfin − tinit)

(see formula (3.13) in De Felice (2010) with respect to Ωγ The
number of e-foldings is too small for to obtain the inflation effect.

0 2. ´ 10-10 4. ´ 10-10 6. ´ 10-10 8. ´ 10-10 1. ´ 10-9
WΓ

0.05

0.10

0.15

0.20

0.25

0.30

0.35

N

Figure: Diagram of the relation between positive Ωγ and the approximate
number of e-foldings N = Hinit(tfin − tinit) from tinit to tfin.
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Statistical analysis of the model I

The following astronomical observations were used:

• supernovae of type Ia (Union 2.1 dataset),

• BAO (SDSS DR7 dataset, 6dF Galaxy Redshift Survey,
WiggleZ measurements),

• measurements of H(z) for galaxies,

• Alcock-Paczyński test,

• measurements of CMB and lensing by Planck and low `
polarisation by WMAP.

The total likelihood function is expressed in the following form

Ltot = LSNIaLBAOLAPLH(z)LCMB+lensing. (72)

In estimation of model parameters, we use our own code
CosmoDarkBox (the Metropolis-Hastings algorithm).
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Statistical analysis of the model II
We use Bayesian information criterion (BIC), for comparison our
model with the ΛCDM model. The expression for BIC is defined as

BIC = χ2 + j ln n, (73)

where χ2 is the value of χ2 in the best fit, j is the number of model
parameters (our model has three parameters, the ΛCDM model has
two parameters) and n is number of data points (n = 625).

• the Starobinsky-Palatini model — BICSP = 135.668

• the ΛCDM model BICΛCDM = 129.261.

∆BIC = BICSP − BICΛCDM = 6.407.

The evidence for the model is strong as ∆BIC is more than 6. So,
in comparison to our model, the evidence in favor of the ΛCDM
model is strong, but we cannot absolutely reject our model.
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Table: The best fit and errors for the estimated model for the positive Ωγ

with Ωm,0 from the interval (0.27, 0.33), Ωγ from the interval
(0.0, 2.6× 10−9) and H0 from the interval (66.0 (km/(s Mpc)), 70.0
(km/(s Mpc))). Ωb,0 is assumed as 0.048468. H0, in the table, is
expressed in km/(s Mpc). The value of reduced χ2 of the best fit of our
model is equal 0.187066 (for the ΛCDM model 0.186814).

parameter best fit 68% CL 95% CL

H0 68.10
+1.07
−1.24

+1.55
−1.82

Ωm,0 0.3011
+0.0145
−0.0138

+0.0217
−0.0201

Ωγ 9.70× 10−11 +1.3480× 10−9

−9.70× 10−11
+2.2143× 10−9

−9.70× 10−11
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Conclusions I

• Palatini gravity, particularly Strobinsky type, may provide
simple and viable gravity models which in solar system tests
do not differ much from GR.

• Palatini cosmology, particularly Strobinsky type, may provide
viable cosmological models which are comparable with the
LCDM model and are able to solve some inlationary or DE,
DM puzzles.

• If Ωγ is small, then asudden =

(
− 2Ωm,0

1
Ωγ

+8ΩΛ,0

)1/3

for negative

Ωγ and afreeze =

(
1−ΩΛ,0

8ΩΛ,0+ 1
Ωγ (Ωm+ΩΛ,0)

) 1
3

for positive Ωγ . These

values defines the natural scale at which singularities appear
in the model
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Conclusions II

• In both cases of negative and positive γ one deals with a finite
scale factor singularity. For negative γ it is a sudden
singularity - type II. The evolutionary scenarios reveal the
presence of bounce during the cosmic evolution.

• For γ > 0 it is type III freeze singularity providing
pre-inflationary era.

• Two phases of deceleration and two phases of acceleration are
key ingredients of our model. While the first phase models
transition from the matter domination epoch to the
pre-inflation the second phase models transition from the
second matter dominated epoch toward the present day
acceleration.
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Conclusions III

• The phase portrait for model with the positive value of γ is
equivalent to the phase portrait of ΛCDM model (following
the dynamical system theory equivalence assumes the form of
topological equivalence establish by homeomorphism). There
is only a quantitative difference related with the presence of
the non-isolated freeze singularity. The scale of appearance of
this type singularity can be also estimated and in terms of

redshift: zfreeze = Ω
−1/3
γ .

• For the StarobinskyPalatini model in the Einstein frame for
the positive parameter, the sewn freeze singularity are
replaced by the generalized sudden singularity. In consequence
this model is not equivalent to the phase portrait of the
LCDM model. This model can provide a proper number of
e-folds N = 50− 60.
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Conclusions IV
• There are also some other advantages when transforming to

Einstein frame, namely that in this frame one naturally
obtains the formula on dynamical dark energy which is going
at late time toward cosmological constant. It is important
that corresponding parametrization of dark energy is not
postulated ad hock but it emerges from the first principles –
which is the formulation of the problem in the Einstein frame.
It is important that the parametrization of dark energy
(energy density as well as a pressure) in terms of the Ricci
scalar is given in a covariant form from the structure equation.

This work has been supported by Polish National Science Centre
(NCN), project DEC-2013/09/B/ST2/03455.
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