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Introduction.
For finding the low-energy Lagrangian of String theory
compactified on a CY manifold, one needs to know the Special
Kähler geometry on the moduli space of complex structure on a
CY threefold X .

A way to compute this was proposed in the work by Candelas, de
la Ossa,Green and Parkes (CDGP).
Kähler potential of the metric on the moduli space is expressed
bilinearly in terms of periods ∈ H3(X ) of the CY 3-form Ω.

Periods ωµ in a particular basis of cycles in qµ ∈ H3(X ) have been
found by Berglund, Candelas, de la Ossa, Font, Hubsch, Jancic
and Quevedo (BCDFHJQ) for a large number of CY manifolds

ωµ :=

∮
qµ∈H3(X )

Ω,

The main difficulty in the CDGP approach is finding then a
symplectic basis of periods Πµ.



We suggest an alternative way to the computation of Kähler
geometry for the case CY manifold given by a hypersurface
W0(x) = 0 in a weighted projective space.

Actually it is not necessary to look for the symplectic basis of
periods. The Kähler potential can be expressed in terms the
periods ω±µ (φ) and their intersection matrix Cµν = qµ ∩ qν as

e−K(φ) = ωµ(φ)Cµν ω̄ν(φ).

To find the intersection matrix Cµν we use the fact that the moduli
space of CY manifold is a subspace in the Special Frobenius
manifold (SFM) which arises on the deformations of the singularity
defined by the Landau-Ginzburg superpotential W0(x).

This fact allows to express Cµν in terms the holomorphic metric
ηµρ on the Special Frobenius manifold.

Alexander Belavin, Konstantin AleshkinSuperstring compactification and Special Frobenius manifold structure.



Also using the relation with the Special Frobenius manifold we can
define and find explicitely an additional basis of periods called σµ
connected by some constant matrix T ν

µ with the periods ω±µ (φ)

ω±µ (φ) = T ν
µ σ
±
ν (φ).

The matrix T ν
µ can be used for expressing Cµν in terms of the FM

metric ηµρ.

Kähler potential is then given in terms of the periods σµ, the
holomorphic FM metric ηµρ and the matrix T ν

µ as follows:

e−K = σ+
µ η

µρMν
ρσ
−
ν , M = T−1T̄ .

Below we prove this formula and show how it can be applied to the
different Calabi-Yau manifolds.



Special geometry

Recall the basic facts about the special Kähler geometry and how
it arises on the CY moduli space (BGH-S-CD).

Let moduli space M of complex structures of a given CY manifold
is n-dimensional and z1 · · · zn+1 are the special (projective)
coordinates on it.
Then there exists a holomorphic homogeneous function F (z) of
degree 2 in z called a prepotential such that the Kähler potential
K (z) of the moduli space metric is given by

e−K(z) = za · ∂F̄
∂z̄ ā
− z̄ ā · ∂F

∂za

This metric on the moduli space of complex structures is a metric
that naturally arises from deWitt (Polyakov) metric on a space of
metrics on CY manifolds.



Special geometry on moduli spaces
Let X is CY three-fold and yµ (µ = 1, 2, 3) are complex
coordinates on X .
The moduli space of X is the space of metric perturbations of X
that preserve Ricci-flatness.
The metric on the complex structure CY moduli space obtained
from natural metric for CY metric deformations of type
δagµν , δb̄gµ̄ν̄ preserving Ricci-flatness is

Gab̄ =

∫
X
d6y g1/2 gµσ̄gνρ̄δagµνδb̄gσ̄ρ̄.

The deformations which leave the metric Ricci flat corresponds to
elements in H2,1(X ):

δagᾱβ̄ → χa,µνβ̄ ∼ Ωµνλg
λᾱδagᾱβ̄

We can then rewrite the above metric as

Gab̄ =

∫
X χa ∧ χ̄b̄∫
X Ω ∧ Ω̄

.

a, b̄ are indices of complex coordinates in the deformation space.



From Kodaira Lemma:

∂aΩ = kaΩ + χa,

it follows that this metric is a Kähler :

Gab̄ = −∂a∂b̄ ln

∫
X

Ω ∧ Ω̄

To obtain the bilinear formulae written above, define the basis of
periods as integrals over Poincare dual symplectic basises
Aa,Bb ∈ H3(X ,Z):

Aa ∩ Bb = δab, Aa ∩ Ab = 0, Ba ∩ Bb = 0.

With this, we define periods in the symplectic basis

za =

∫
Aa

Ω, Fb =

∫
Bb

Ω.

and obtain

e−K =

∫
X

Ω ∧ Ω̄ = za · F̄ā − z̄ ā · Fa.



From the same Lemma we obtain∫
X

Ω ∧ ∂aΩ = Fa − zb∂aFb = 0.

It follows

Fa(z) =
1

2
∂aF (z),

and

e−K(z) = za · ∂F̄
∂z̄ ā
− z̄ ā · ∂F

∂za

where F (z) = 1/2zbFb(z).
That is the Kähler potential is expressed through the prepotential
F . So the geometry of the moduli space of CY threefold is special.
Using the notation (Πµ) =

(
∂F
∂za , z

a
)

for the vector of periods, we
have

e−K(z) = ΠµΣµνΠ̄ν ,

where symplectic unit Σ is the inverse intersection matrix for cycles
of the symplectic basis .
We can rewrite this expression in an arbitrary basis of cycles as

e−K(φ) = ωµ(φ)Cµν ω̄ν(φ).



CY as a hypersurface in a weighted projective space

We will concentrate on the case when Calabi-Yau manifold is
defined as a hypersurface in a weighted projective space.
Let x1, . . . , x5 be homogeneous coordinates in a weighted
projective space P4

(k1,...,k5) and

X = {x1, . . . , x5 ∈ P4
(k1,...,k5)|W0(x) = 0}.

W0(x) is some quasi-homogeneous polynomial, that defines an
isolated singularity in the origin

W0(λki xi ) = λdW0(xi )

and

degW0(x) = d =
5∑

i=1

ki .

The last relation ensures that X is a Calabi-Yau manifold.



The moduli space of complex structures on Calabi-Yau threefold X
is then given by homogeneous polynomial deformations of this
singularity modulo coordinate transformations:

W (x , φ) = W0(x) + φ0

∏
xi +

µ∑
s=0

φses(x),

es(x) are polynomials of x with the same weight as W0(x).
The holomorphic 3-form Ω is given as a residue of a 5-form in the
underlying affine space C5:

Ω =
x5dx1 ∧ dx2 ∧ dx3

∂W (x)/∂x4
=

1

2πi

∮
|x5|=δ

ResW (x)=0
dx1 · · · dx5

W (x)
.



A special basis of periods

Having the explicit expression for Ω, we can define a special basis
of periods ωµ(φ) as follows (CDGP).
We choose the so-called cycle q1, which is a torus in the large
complex structure limit φ0 >> 1 (for simplicity other φs = 0):

W (x , φ) = W0(x) + φ0

∏
xi .

In this limit, we can define an 5−dimensional torus Q1 = |xi | = δi
surrounding the hypersurface W (x) = 0 in C5. It corresponds to
an 3-dimensional torus q1 ⊂ X . Then the fundamental period is

ω1(φ) :=

∫
q1

Ω =

∫
Q1

dx1 · · · dx5

W (x , φ)

and is given by a residue in its large φ0 expansion.
More periods ωµ may be obtained as analytic continuations of ω1

in φ. This can be done by continuing ω1(φ) for a small φ0 using
Barnes’ trick and using the symmetry of W0(x) afterwards.



Namely, there is a group of phase symmetries ΠX acting diagonally
on xi and preserving W0(x).
When W0(x) is deformed, the group actions can be extended on a
parameter space with an action A such that

W (g · x , A(g) · φ0) = W (x , φ).

The moduli space is then at most a factor of the parameter space
{φs}/A.
This allows defining a set of other periods as,

ωµg (φ) = ω1(A(g) · φ0), g ∈ GX

In many cases this construction gives the whole basis of periods for
the manifold X .



Periods as oscillatory integrals

The next important step is to transform the integrals for the
periods

∫
qµ

Ω to the oscillatory form. Starting from

ωµ(φ) :=

∫
qµ

Ω =

∫
Qµ

d5x

W (x)
,

where qµ ∈ H3(X ) and Qµ ∈ H5(C5\W (x) = 0) ,
we can present them in the form∫

Qµ

d5x

W (x)
=

∫
Q±

µ

e∓W (x)d5x

where Q±µ ∈ H5(C5, ReW0(x) = ±∞).
The map Qµ → Q±µ is possible is due to the isomorphism

H3(X )→ H5(C5\W (x) = 0) = H5(C5, ReW0(x) = ±∞)w∈d ·Z

So, more precisely Q±µ ∈ H5(C5, ReW0(x) = ±∞)w∈d ·Z which is
a subgroup of H5(C5, ReW0(x) = ±∞) defined below.



Special Frobenius manifold.

Let the polynomial W0(x) in C5, which defines CY hypersurface in
4-dimensional weighted projective space, is a quasi-homogeneous
polynomial:

W0(λki xi ) = λdW0(x)

For Quintic threefold W0(x) = 1/5(x5
1 + x5

2 + x5
3 + x5

4 + x5
5 ).

W0(x) has an isolated singularity in the origin C5.
The connection with the singularity theory is important for
computing the Special geometry of the CY moduli space.
Consider the Milnor ring of this singularity

R0 =
C[x1, . . . , x5]

∂1W0(x) · . . . · ∂5W0(x)
.

Actually, we need to consider not whole Milnor ring but its
Q = Zd -invariant Special subring RQ

0 .
This subring is generated by marginal deformations of the
singularity, which have the same weight as W0(x) and correspond
to moduli of CY. That is weights of elements of RQ

0 are integer
multiples of d .



We will denote as es(x) (with latin indexes s) elements that
correspond to the complex structure deformations of Mc and as
eµ(x) (with greek indexes µ) elements of the basis of R(W0).
Dimension of the subring RQ

0 is equal to the dimension of H3(X ),
where X is Calabi-Yau defined by W0.
In Quintic case the dimension of Milnor ring= 1024,
dimRQ

0 = dimH3(X ) = 204 and dimMc = 101.
There exist a natural multiplication with structure constants Cσµν in

RQ
0 and a pairing ηµν , turning RQ

0 into Frobenius algebra.

ηµν = Res
eµ · eν

∂1W0(x) · · · ∂5W0(x)
,

Cµνλ = Cσµνησλ = Res
eµ · eν · eλ

∂1W0(x) · · · ∂5W0(x)
.

Consider the space of deformations of this singularity

W (x) = W0(x) +
∑

tµeµ(x).

where eµ(x) ∈ RQ
0 .



On the space with parameters tµ arises the structure of Special
Frobenius manifold MF with multiplication structure constants
C ρµν(t) for the ring RQ defined by the deformed singularity W (x)

RQ =
C[x1, . . . , x5]

∂1W (x) · . . . · ∂5W (x)
.

and a Riemanian flat metric hµν(t). The metric hµν(t = 0) equal
to ηµν . The structure constants are derivatives of Frobenius
potential F (t),

Cµνλ(t) = C ρµν(t)hρλ = ∇µ∇ν∇λF (t),

where ∇µ is Levi-Civitta connection for hµν(t).
The Frobenius potential F (t) coincides with the prepotential of the
Special geometry after restricting on the subspace of the CY
complex structure deformations .
Cµνλ(t) are nothing but Yukawa coupling constants.



Rezume,
For a generic invariant deformations
W (x) = W0(x) +

∑
tµeµ(x) = 0 does not define a surface in a

projective space.
This only occurs when W (x) is quasihomogeneous, i.e. in a case of
marginal deformations that is deformations that have the same
scaling property as W0(x).

We denote the marginal deformation parameters {φs} ⊂ {tα} .
The marginal deformations W0(x) +

∑
φses(x) define a subspace

of the Special Frobenius manifold connected with W0.
And this subspace coincides with the moduli space of the CY
manifold.



The idea of computation of the periods.

Now we can relate the oscilatory form of the period integrals with
FM structure and with FM metric ηµν in particular. Consider
differentials

D± = D±W0
= d± dW0 ∧ .

They define cohomology subgroups H5
D±(C5)w∈d ·Z on the space of

differential forms of the weght d · Z . They are isomorphic to the
Special ring RQ

eµ(x)→ eµ(x)d5x .

Cohomology subgroups H5
D±(C5)w∈d ·Z are dual to the homology

subgroups H5(C5,ReW0(x) = ∓∞)w∈d ·Z that consist of cycles
Γ±µ ⊂ H5(C5, ReW0(x) = ±∞) with non degenerate pairing with
eν(x)d5x ∈ H5

D±(C5)w∈d ·Z defined as

〈Γ±µ , eνd5x〉 =

∫
Γ±
µ

eν · e∓W0(x)d5x .

H5(C5, ReW0(x) = ±∞)w∈d ·Z are invariant if xi → e2πiki/dxi .



A possible choice of cycles Γ±µ is∫
Γ±
µ

eν · e∓W0(x)d5x = δµν .

To compute the periods presented as the oscilatory integrals∫
Γ±
µ

eν · e∓W (x ,φ)d5x .

W (x , φ) = W0(x) +
∑µ

s=0 φ
ses(x) we first expand the integrand

to series over φs we get the integrals of type
∫

Γ±
µ
P(x)e−W0(x)d5x

where P(x) ∈ RQ being the products es(x).
Computing such integrals then is based on the fact that∫

Γ±
µ

P(x)e∓W0(x)d5x =

∫
Γ±
µ

P̃(x)e∓W0(x)d5x

if the forms in integrands are equivalient in H5
D±(C5)w∈d ·Z

P(x)d5x − P̃(x)d5x = D±U.

This reduces computing the integrals to the linear problem of
expanding P(x)d5x over basis of H5

D±(C5)w∈d ·Z.



The connection between ηαβ and Cµν.

We use the connection of the CY moduli space to the Special FM
to find the inverse intersection matrix of the cycles Cµν ,
qµ ∩ qν = Q+

µ ∩ Q−ν .
To do this, introduce a few additional basises of periods ω±α,µ(φ) as
integrals of eα(x)d5x ∈ H5

D±(C5)w∈d ·Z over the cycles
Q±µ ∈ H5(C5, ReW0(x) = ±∞)w∈d ·Z that have been defined
earlier:

ω±αµ(φ) =

∫
Q±

µ

eα(x) e∓W (x ,φ)d5x .

In particular, the periods ω±1µ(φ) coincide with the periods ω±µ (φ)
defined above since we assume that e1(x) = 1 denotes the unity in
the ring RQ .
The crucial fact for possibility to compute Cµν is its connection
with the FM metric hαβ(t = 0) as:

ηαβ = ω+
α,µ(t = 0)Cµνω−β,ν(t = 0)



Proving the connection between ηαβ and Cµν.
So we need to prove the relation

ηab = hab(t = 0) = Res
ea · eb dnx

∂1W0 · · · ∂nW0
=

=

∫
Q+

µ

ea e
−W0dnx Cµν

∫
Q−

ν

eb eW0dnx

To do this consider a small perturbation W (x , t) = W0(x) + taea,
so that 0 - critical point of W becomes a set of Morse points
p1, . . . , pµ and consider a bilinear form

hab(t, z) =

∫
Q+

µ

ea e
−W (x ,t)/zdnx Cµν

∫
Q−

ν

eb eW (x ,t)/zdnx

Notice, that

hab(t = 0, z) = zk · hab(t = 0, z = 1),

because if t = 0, we can absorb z by coordinate transform
xi → zki/dxi .



We can choose basis of cycles : L±i to start from pi and go along
the gradient of Re(W (x , t)) in positive/negative direction and
their intersections L+

i ∩ L−j = δij . In this basis rhs becomes:

µ∑
i=1

∫
L+
i

ea e
−W (x ,t)/zdnx

∫
L−i

eb eW (x ,t)/zdnx

Using stationary phase expansion as z → 0 we obtain for a period:∫
L+
i

ea(x) e−W (x ,t)/zdnx = ± (2πz)N/2√
HessW (pi , t)

(ea(pi ) + O(z))

From this we get

hab(t, z) = ±
µ∑

i=1

(2πiz)N
ea(pi ) · eb(pi )

Hess(W (pi , t))
(1 + O(z)) =

= (2πiz)N
(
Res

ea · ebdnx
∂1W · · · ∂NW

+ O(z)

)
By analytic continuation it holds for t = 0. Also we have
hab(0, z) = zk · hab(0, 1). The above equality now follows from the
previous formula.



Finding Cµν and Kahler potential

From this formula we can obtain the expression for Cµν

if we know values of ω+
α,µ(t = 0) for all α.

It follows from the their definition

ω±αµ(φ) =

∫
Q±

µ

eα(x) e∓W (x ,φ)d5x .

that we can express ω+
α,µ(t = 0) in terms of a few first derivatives

over φ of the periods ω±µ (φ) for φ = 0. Denote

ω±α,µ(φ = 0) := (T±)αµ.

inserting this to the eq-n above we obtain the relation

ηµν = (T+)µρ C ρσ (T−)νσ

which helps to express intersection matrix C ρσ in terms ηµν and
matrix T .The result we can insert to the Kahler potential formula

e−K(φ) = ωµ(φ)Cµν ω̄ν(φ)

to obtain the explicit expression for K (φ).



The second basis of cycles

To get more convenient expression for K (φ) we define one more
basis of periods σ±µ (φ) as integrals over the cycles
Γ±µ ∈ H5(C5, ReW0(x) = ±∞)w∈d ·Z defined above:

σ±µ (φ) =

∫
Γ±
µ

e∓W (x ,φ)d5x ,

Once we have an oscillatory representation for the periods σ±µ (φ)
over the corresponding cycles Γ±µ , we can define additional
integrals σ±α,µ(φ) over the same cycles as

σ±α,µ(φ) =

∫
Γ±
µ

eα(x) e∓W (x ,φ)d5x

It follows from e1(x) = 1 that σ±1µ = σ±µ . Due to our choice of the
cycles Γ±µ we also have σ±α,µ(t = 0) = δα,µ .
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The connection between two basises of periods

Since both ω±µ (φ) and σ±ν (φ) are basises of periods defined as the
integrals over the cycles in H5(C5, ReW0(x) = ±∞)w∈d ·Z,
they are connected by some constant matrix (T±)νµ:

ω±µ (φ) = (T±)νµ σ
±
ν (φ).

To find T , it suffices to take a few first terms of the expansion
over φ of the periods ω±µ (φ) and σ±µ (φ). The same relation
connects periods ω±αµ(φ) and σ±αν(φ) for each α.
Knowing that σ±α,µ(φ = 0) = δα,µ, we obtain

ω±α,µ(φ = 0) = (T±)αµ.

From above eq-n we then obtain

ηµν = (T+)µρ C ρσ (T−)νσ.

So we express the intersection matrix C ρσ in terms of the known
Frobenius metric ηµν and the also known matrix T .



Main statement.

Thus we arrive to the main statement that

e−K(φ) = σµ(φ) ηµν Mλ
ν σ
−
λ , (φ)

where the matrix Ma
b = (T−1)ac T̄ c

b .

It gives an explicit expression for the Kähler potential K in terms
of the periods σµ(φ), FM metric ηµν and matrix Tµ

ν .
All these data can be computed exactly as it has been explained
above.
It makes sense to stress that having the exact expression for
ω±ν (φ), we can obtain the exact and explicit expressions for the
periods σ±µ (φ) :

σ±µ (φ) =
(
(T±)−1

)ν
µ
ω±ν (φ).

In terms of the periods σ±µ (φ) expression for the Kähler potential
has a convenient form for calculating the metric on the CY moduli
space.



Example 1: Quintic
The one-parameter family of CY manifold is defined as

Xψ = {xi ∈ P4 |Wψ(x) = x5
1 + x5

2 + x5
3 + x5

4 + x5
5−

− 5ψx1x2x3x4x5 = 0}.
In this case, the phase symmetry is Z5

5 and the induced action A

on the one-dimensional space {ψ} is Z5 : ψ → e2πi/5ψ.
That is the whole complex structure moduli space of the quotient
X/Z3

5 =: X̂ , that is the mirror manifold of the original quintic. In
particular, h1,1(X̂ ) = 101, h2,1(X̂ ) = 1.
We choose cycles Γ±µ dual to the cohomology classes
d5x ,

∏
xi · d5x ,

∏
x2
i · d5x ,

∏
x3
i · d5x , a basis in the cohomology

subgroup invariant under the Z3
5.

For the periods, the recursion procedure gives:

σ±µ (ψ) =
(±1)µ−1

Γ(µ/5)55µψ

∞∑
n=0

Γ5(n + µ/5)

Γ(5n + µ)
(5ψ)5n+µ =

=
(±ψ)µ−1

Γ(µ)
+ O(ψµ+3)



The fundamental period for the quintic is defined as a residue of a
holomorphic three-form Ω

x5dx1 ∧ dx2 ∧ dx3

∂Pψ/∂x4
,

and given by an integral over a cycle q1, which is three-dimensional
torus. Its analytic continuations as explained give the whole basis
of periods in a basis of cycles with integral coefficients:

ωµ(ψ) =
∞∑

m=1

e4πim/5Γ(m/5)(5e2πi(µ−1)/5ψ)m−1

Γ(m)Γ4(1−m/5)
, |ψ| < 1,

Taking the first four terms of the expansion of the periods above
we obtain

Tµ
ν =

5ν−1e2πi((ν−1)(µ−1)+2ν)/5Γ(ν/5)

Γ4(1− ν/5)
,

The FM holomorphic metric in this case

η = antidiag(1, 1, 1, 1).



Finally we obtain η̂ = ηT−1T̄ and Kähler potential for the metric:

e−K(ψ) =
Γ5(1/5)

125Γ5(4/5)
σ+

11σ
−
11 +

Γ5(2/5)

5Γ5(3/5)
σ+

12σ
−
12+

+
5Γ5(3/5)

Γ5(2/5)
σ+

13σ
−
13 +

125Γ5(4/5)

Γ5(1/5)
σ+

14σ
−
14.

In particular,

Gψψ(0) = 25
Γ5(4/5)Γ5(2/5)

Γ5(1/5)Γ5(3/5)

that coincides with the famous result by Candelas et al.



Example 2: Fermat hypersurface
The direct generalization of the quintic is a Fermat hypersurface,
which is the one given by the equation

W0(x) =
5∑

i=1

xnii , ni = d/ki ,
∑

ki = d ,

and the degree d is equal to the least common multiple of {ki}.
As in the case above, we consider a one-dimensional deformation
W (x , φ0) = W0(x) + φ0

∏5
i=1 xi . The phase symmetry group is

ΠX = Zn1 × · · · × Zn5 . The lifted action on φ0 is
Zd : φ0 → ζφ0, ζ = e2πi/d . We take the expression for the
fundamental period the known result by Berglund et al:

ω1(φ0) ==
d−1∑
µ=1

A(µ)
φµ−1

0

Γ(µ)
+ O(φd−1

0 ).

and

A(µ) =
(−1)µ−1e

−πiµ
d

sin µπ
d

∏5
i=1 Γ(1− kiµ

d )



We note that A(µ) vanishes if kiµ/d ∈ Z, i.e. µ/ni ∈ Z.
According to the general analytic continuation procedure

ωµ(φ0) =
∑

ζ(ν−1)(µ−1)A(ν)
φν−1

0

Γ(ν)
+ O(φd−1

0 ).

Using the definitions for σ+
µ (φ0) we obtain

σ+
µ (φ0) =

φµ−1
0

Γ(µ)
+ O(φµ+d−2

0 ), µ/ni /∈ Z, otherwise 0

This latter condition implies that ωµ form a basis in the periods of
Ω deformed by φ0. We obtain the transition matrix

Tµ
ν = ζ(µ−1)(ν−1)A(µ), µ/ni /∈ Z, ν/ni /∈ Z

(T−1)λµ =
ζ̄(λ−1)(ν−1)

d̃ − 1

1

A(µ)

and the real structure

Mµ
ν =

Ā(µ)

A(d − µ)
δµ+ν,d .



In this case, ηµ,ν = δµ+ν,d and therefore

e−K(φ0) =
d−1∑

µ=1, µ/ni /∈Z

5∏
i=1

γ

(
kiµ

d

)
σ+
µ (φ0)σ−µ (φ0)

where γ(x) = Γ(x)/Γ(1− x) and

σ±µ (φ0) = ±
∞∑

R=0

φµ−1+dR
0

Γ(dR + µ)

5∏
j=1

Γ
(
kj(R + µ

d )
)

Γ(
kjµ
d )

From this we get a formula for the metric itself

Gφ0φ0
=

5∏
i=1

(
γ

(
kiµ0

d

)
γ

(
1− ki

d

))
|φ0|2(µ0−1)

Γ(µ0)2
+ O(|φ0|2µ0),

µ0 is the least integer 1 ≤ µ0 < d such that (µ0 + 1)/nj 6= Z.
The last formula reproduces the known results for CY manifolds
P4

(2,1,1,1,1)[6], P4
(4,1,1,1,1)[8] and P4

(5,2,1,1,1)[10] obtained by Klemm
and Theisen.



Example 3: The case of 5 polynomials

We assume that the above approach is applicable to the case of
CY manifold defined in terms of the hypersurface in weighted
projective spaces defining polynomial is

W0(x) =
5∑

j=1

5∏
i=1

x
aij
i ,

∑
kiaij = d ,

and ∑
ki = d .

In this case periods are given in terms of the mirror CY manifold
X̂ . The polynimial W0(x) has a group ΠX of phase symmetries
represented as

ΠX = QX × GX ,

where Qx , a quantum symmetry group ' (Zd : k1, · · · , k5), acts as
xi → e2πiki/d . We note that action of the quantum symmetries on
X is trivial. The complement to QX in ΠX is called a geometric
symmetry group GX .



For mirror manifolds the total phase symmetry is unchanged
whereas roles of quantum and geometric symmetries switch:

GX = QX̂ , QX = GX̂ .

To build such a mirror, we must first to consider a polynomial
Ŵ0(x) with a transposed matrix of exponents âij = aji ,

Ŵ0(x) =
5∑

j=1

5∏
i=1

x
âij
i ,

∑
k̂iaji = d̂ ,

and ∑
k̂i = d̂ .

Here k̂i and d̂ are uniquely defined by the reqirement that the
equalities above are satisfied.
This polynomial has the same group of phase symmetries, however
generically the needed condition is not fulfiled, i.e. its quantum
symmetry is smaller, than geometric symmetry of the original
hypersurface.



To get a mirror we need to enlarge quantum symmetry of
{Ŵ0(x) = 0}. For this purpose we take a quotient of the
hypersurface {Ŵ0(x) = 0}/H, where H is some subgroup of phase
symmetries which is to be found in each case.
Thus, computing complex moduli space for the manifold X (or X̂ )
we compute also a complexified Kähler moduli space metric for the
mirror CY through the mirror map.
The periods ωµ(φ) in this case were computed earlier and, if we set
all parameters φs (but not φ0) equal to zero for simplicity , then
we have:

ω1(φ0) =
d̂−1∑
r=1

A(r)
φr−1

0

Γ(r)
+ O(φd̂−1

0 )

A(µ) = (−1)µ
π

d̂ sin πµ

d̂

5∏
j=1

1

Γ(1− k̂jµ

d̂
)
.

For our general method to work, this must give all relevant
periods. Basically we must check that all possible periods are
obtained from this one (with all φs 6= 0) by phase-symmetry
analytic continuations.



In other words it is necessary to verify the relation

dim〈ω0(A(g) · φ)〉g∈GX
= dimH3(X ).

This was certainly the case in the preceding examples, but not in
this case, we are not aware of this fact in general ( it is so in all
examples). As in the previous example, in the one-modulus case
we obtain

e−K(φ0) =
d̂−1∑

µ=1, µk̂i/d̂ /∈Z

ηµ,d̂−ν
5∏

j=1

γ

(
k̂jµ

d̂

)
σ+
µ (φ0)σ−ν (φ0).

For this formula to hold the number of linearly independent
elements

∏5
i=1 x

n
i d

5x ∈ H5
D±(C5) should be equal to the number

of 1 ≤ µ < d̂ , µki/d 6= Z.



Example 4: Two-moduli non-Fermat threefold.

This CY manifold is built from the following hypersurface

X = {xi ∈ P4
(3,2,2,7,7) |Wφ(x) = x7

0 + x7
1x3 + x3

3 + x7
2x4 + x3

4−

− φ0x1x2x3x4x5 + φ1x
3
0x

3
1x

3
2 = 0}.

This example considered in BCOFHJQ is interesting because it is
not of Fermat type and is not described by a product of N=2
Minimal Models. Its mirror is a hypersurface of degree 7 in a
different projective space P4

(1,1,1,2,2).
The weight of the singularity is equal to d = 21. The phase
symmetry is Z2

21 × Z7. We again consider a factor X̂ = X/H by
the following H = Z21 action:

H := (Z21 : 12, 2, 0, 7, 0)

The Hodge numbers are h1,1(X̂ ) = 95, h2,1(X̂ ) = 2. The above
two–parametric family is the maximal deformation surviving after
the factorisation. The induced action A on the two-dimensional
space {φ0, φ1} is Z7 : φ0 → αφ0, φ1 → α3φ1, where α7 = 1 is a
primitive root.



Analytic continuations of the fundamental period give the full basis
of periods in a basis of cycles with integral coefficients:

ωµ(φ0, φ1) = −1

7

∞∑
n=1

e6πin/7 (αµ−1φ0)n−1

Γ(n)

∞∑
m=0

e−3iπm/7Γ
(
n+3m

7

)
Γ2
(
1− n+3m

7

)
Γ2
(
1− 2n−m

7

) (α3(µ−1)φ1)m

m!
, |φ0|, |φ1| << 1,

Now we perform the Milnor ring computations to compute the
metric η. If we denote

e2(x) = x0x1x2x3x4, e3(x) = x3
0x

3
1x

3
2 ,

then the H-invariant subring of RQ
0 is generated by e2 and e3. It is

easy to compute the following relations:

e2
3 = 0, e3

2 = 0

and thus the vector space basis of this subring is:

e1, e2, e3, e4 = e2
2 , e5 = e2e3, e6 = e2

2e3.

The last one is of the highest degree 63 and therefore in this basis
the metric η = antidiag(1, 1, 1, 1, 1, 1).

Alexander Belavin, Konstantin AleshkinSuperstring compactification and Special Frobenius manifold structure.



Taking the first four terms of the expansion of the periods above
we obtain

T ν
µ = A(ν)αkν(µ−1), kν = (1, 2, 4, 3, 5, 6)

A(ν) = α2mν−nν/2 (−1)nν−1Γ
(
nν+3mν

7

)
Γ2
(
1− nν+3mν

7

)
Γ2
(
1− 2nν−mν

7

) ,
Here (nν ,mν) = ((1, 0), (2, 0), (1, 1), (3, 0), (2, 1), (3, 1))
correspond to our choice of basis.
The Kähler potential for the metric:

e−K(φ0,φ1) = γ3(1/7)γ2(2/7)σ+
11σ
−
11+γ3(2/7)γ2(4/7)σ+

12σ
−
12+γ3(4/7)γ2(1/7)σ+

13σ
−
13+

γ3(3/7)γ2(6/7)σ+
14σ
−
14+γ3(5/7)γ2(3/7)σ+

15σ
−
15+γ3(6/7)γ2(5/7)σ+

16σ
−
16 ,

here γ(x) = Γ(x)/Γ(1− x). Kähler metric has the form

G (0) =

(
γ3
(

6
7

)
γ2
(

4
7

)
γ
(

2
7

)
0

0 γ3
(

4
7

)
γ2
(

5
7

)
γ
(

6
7

))
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Conclusion

A new method for computing the metric of CY moduli space is
proposed.This method does not demand using of Picard–Fuchs
equations. Instead, the cohomology technique for computing
periods can be applied. It can be used for the computations of the
CY moduli space geometry in cases when the dimesion of the
moduli space more than one.

The Special FM structure naturally arising from an N=2 SCFT
plays a significant role. The result is given in terms of the
topological metric on FM and two basises of periods.
Both of these basises can be computed avoiding the complicated
direct computation of the symplectic basis of periods.

The method used here was applied for CY manifolds, given by one
polynomial equation, such as the case of Fermat hypersurfaces.
We suppose the same approach can be used for CY manifolds of a
more general type.


