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Abstract

In this article we present a new way of representation of T-duality using dou-
ble space. Double space is obtained by adding T-dual coordinates to the initial
ones. T-dualization in double space is represented by permutation of appropri-
ate directions from initial and T-dual space. We did this both for bosonic and
fermionic T-dualization of type II superstring theory propagating in the constant
background fields. Obtained results are in full correspondence with the results of
standard Buscher procedure.

1. Introduction

T-duality as a fundamental characteristic of string dynamics [1, 2, 3, 4, 5],
unexprerienced by point-like particle, makes that there is no difference in
physical content between string theories compactified on a circle of radius R
and circle of radius 1/R. It is very important for understanding M-theory,
because five consistent superstring theories are connected by web of T and
S dualities.

Buscher T-dualization procedure [2] represents a mathematical environ-
ment for performing T-duality. In order to make T-dualization along some
directions, they should be isometry ones. Effectively, this means that back-
ground fields do not depend on those coordinates [2, 3, 4, 5, 6, 7]. Further,
we localize noticed symmetry in standard way introducing world-sheet co-
variant derivatives, ∂±x

µ → D±x
µ = ∂±x

µ+vµ±, where vµ± are gauge fields.
In order to have the same number of degrees of freedom in T-dual theory as
in the initial one, the new term with Lagrange multipliers is added to the
action. Using gauge freedom we fix initial coordinates and get the gauge
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282 B. Nikolić and B. Sazdović

fixed action. Varying gauge fixed action with respect to the Lagrange mul-
tipliers one gets the initial action and varying with respect to the gauge
fields one gets T-dual action.

This standard T-dualization procedure was used in the papers [8, 9,
10, 11, 12] in the context of closed string noncommutativity. There is a
generalized Buscher procedure which deals with background fields depend-
ing on all coordinates. The new step in this procedure is introducing of
gauge invariant coordinate for the directions on which background fields
depend on. The generalized procedure was applied to the case of bosonic
string moving in the weakly curved background [13, 14]. It leads directly
to closed string noncommutativity [15].

Double space formalism is a framework in which we can represent T-
dualization in a simple and elegant way. It is spanned by double coordinates
ZM = (xµ, yµ) (µ = 0, 1, 2, . . . , D−1), where xµ and yµ are the coordinates
of the D-dimensional initial and T-dual space-time, respectively. It was
the subject of the articles about twenty years ago [16, 17, 18, 19, 20], but
interest for it occured again [21, 22, 23, 24, 25]. In all these papers T-duality
is represented as O(d, d) symmetry transformations.

In Refs.[26, 27] we doubled all bosonic coordinates and obtain the the-
ory which contains the initial and all corresponding T-dual theories. In
such theory partial T-dualization (T-dualization along some of the initial
directions xa) is represented as permutation of the corresponding coordi-
nate subsets, xa and ya, which is a generalization of ideas given in [16].

When one says T-duality, one means bosonic T-duality. But since re-
cently we can also speak about fermionic T-duality. Analyzing the gluon
scattering amplitudes in N = 4 super Yang-Mills theory fermionic T-
duality was discovered [28, 29]. Mathematically, fermionic T-duality is
realized within Buscher procedure, except that dualization is performed
along fermionic directions, θα and θ̄α.

In the present paper we are going to extend approach of double space
to the type II theories both in the case of bosonic and fermionic T-duality
[28, 30, 31]. We will show that double space method gives the same results
as in the case of applying of standard Buscher procedure.

Here we start applying the approach of Refs.[26, 27] in the case of partial
bosonic T-dualization of the type II superstring theory [1] and then in the
case of fermionic T-duality. Generally, we use type II pure spinor action
from [32]. This action is given in the form of an expansion in powers of
fermionic coordinates θα and θ̄α. In both cases we simplify the action using
different assumptions explained in the paper. As a result in both cases we
obtain same action, which describes ghost free type II superstring theory
in pure spinor formulation [33, 34, 35] in the approximation of constant
background fields and up to the quadratic terms.

Bosonic T-dual transformation laws can be rewritten via double space
coordinates ZM . In order to achieve that we introduce the generalized
metric HMN and the generalized current J±M . The permutation ma-
trix (T a)MN makes permutation of xa and ya, where index a marks the



Representation of T-duality of type II pure spinor superstring 283

directions along which we make partial bosonic T-dualization. The T-
dual coordinate is defined as aZ

M = (T a)MNZ
N and it has to obey

the T-dual transformation law of the same form as initial coordinates,
ZM . This demand produces the expressions for T-dual generalized met-
ric, aHMN = (T aHT a)MN , and T-dual current, aJ±M = (T aJ±)M . From
transformation of the generalized metric we obtain T-dual NS-NS back-
ground fields and from transformation of the current we obtain T-dual NS-
R fields. The transformation law for R-R field strength we get imposing
additional assumtions because it is coupled by fermionic degrees of freedom
along which we do not dualize.

Further we apply the method in the case of fermionic T-dualization. We
are going to double fermionic sector of type II theories adding to the coordi-
nates θα and θ̄α their fermionic T-duals, ϑα and ϑ̄α, where α = 1, 2, . . . , 16.
Rewriting T-dual transformation laws in terms of the double coordinates,
ΘA = (θα, ϑα) and Θ̄A = (θ̄α, ϑ̄α), we define the ”fermionic generalized
metric” FAB and the generalized currents J̄+A and J−A. The permu-
tation matrix T AB exchanges θ̄α and θα with their T-dual partners, ϑ̄α
and ϑα, respectively. From the requirement that fermionic T-dual coordi-
nates, ?ΘA = T ABΘB and ?Θ̄A = T ABΘ̄B, have the same T-dual trans-
formation law as initial ones, ΘA and Θ̄A, we obtain the expressions for
fermionic T-dual generalized metric, ?FAB = (T FT )AB, and T-dual cur-
rents, ?J̄+A = TABJ̄+B and ?J−A = TABJ−B, in terms of the initial ones.
These expressions produce the expressions for fermionic T-dual NS-R fields
and R-R field strength. Expressions for fermionic T-dual metric and Kalb-
Ramond field are obtained separately under some assumptions.

In this article we will not present explicitely the transformation of dila-
ton field, which demands quantum treatment.

2. Pure spinor action of type II action

The sigma model of pure spinor type II superstring action for type II su-
perstring [32] is of the form

S =

∫
d2ξ

[
∂+θ

αAαβ∂−θ̄
β + ∂+θ

αAαµΠ̄µ + ΠµAµα∂−θ̄
α + ΠµAµνΠ̄ν

+ dαE
α
β∂−θ̄

β + dαE
α
µΠ̄µ + ∂+θ

αEα
β d̄β + ΠµĒµ

β d̄β + dαPαβ d̄β

+
1

2
NµνΩµν,β∂−θ̄

β +
1

2
NµνΩµν,ρΠ̄

ρ +
1

2
∂+θ

αΩα,µνN̄
µν +

1

2
ΠµΩµ,νρN̄

νρ

+
1

2
NµνC̄µν

β d̄β +
1

2
dαC

α
µνN̄

µν +
1

4
NµνSµν,ρσN̄

ρσ

]
+ Sλ + Sλ̄ , (1)

where

Πµ = ∂+x
µ +

1

2
θα(Γµ)αβ∂+θ

β , Π̄µ = ∂−x
µ +

1

2
θ̄α(Γµ)αβ∂−θ̄

β , (2)
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dα = πα −
1

2
(Γµθ)α

[
∂+x

µ +
1

4
(θΓµ∂+θ)

]
,

d̄α = π̄α −
1

2
(Γµθ̄)α

[
∂−x

µ +
1

4
(θ̄Γµ∂−θ̄)

]
, (3)

Nµν =
1

2
wα(Γ[µν])αβλ

β , N̄µν =
1

2
w̄α(Γ[µν])αβλ̄

β . (4)

Type II superfields generally depends on xµ, θα and θ̄α. The superfields
Aµν , Ēµ

α, Eαµ and Pαβ are physical superfields, because their first com-
ponents are supergravity fields. The fields Ωµ,νρ(Ωµν,ρ), C

α
µν(C̄µν

α) and
Sµν,ρσ, are curvatures (field strengths) for physical superfields. The rest
fields are auxiliary superfirlds because they can be expressed in terms of
the physical ones [32].

The world sheet Σ is parameterized by ξm = (ξ0 = τ , ξ1 = σ) and ∂± =
∂τ±∂σ. Superspace is spanned by bosonic coordinates xµ (µ = 0, 1, 2, . . . , 9)
and fermionic ones θα and θ̄α (α = 1, 2, . . . , 16). The variables πα and π̄α
are canonically conjugated momenta to θα and θ̄α, respectively. The actions
for pure spinors, Sλ and Sλ̄, are free field actions

Sλ =

∫
d2ξwα∂−λ

α , Sλ̄ =

∫
d2ξw̄α∂+λ̄

α , (5)

where λα and λ̄α are pure spinors and wα and w̄α are their canonically
conjugated momenta, respectively. The pure spinors satisfy so called pure
spinor constraints

λα(Γµ)αβλ
β = λ̄α(Γµ)αβλ̄

β = 0 . (6)

3. Bosonic T-dualization

In this section we will introduce approximated action and then apply stan-
dard Buscher procedure on some subset of coordinates xa. Then we will
compare obtained result with the result following from double space for-
malism.

3.1. Simplification of action

The action (1) could be considered as an expansion in powers of θα and
θ̄α. For computational simplicity, in the first step we neglect all terms
in the action containing θα and θ̄α. As a consequence θα and θ̄α terms
disappear from Πµ

±, dα and d̄α and in the solutions for physical superfields,
just x-dependence of the supergravity fields survives.

Let us make T-dualization along some subset of bosonic coordinates
xa. So, we will assume that these directions are isometry ones. It essen-
tially means that corresponding superfields (Aab, Ēa

α, Eαa, Pαβ) should
not depend on xa. This assumption could be extended on all space-time
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directions xµ which means that physical superfields are constant. Accord-
ing to [32], auxiliary superfields are zero, because all physical superfields
are constant. Further, constant physical superfields means that their field
strengths, Ωµ,νρ(Ωµν,ρ), C

α
µν(C̄µν

α) and Sµν,ρσ, are zero.
Background fields obey space-time field equations [36], which are some

kind of consistency conditions. The equation (B.7) from this set of equa-
tions represents the backreaction of Pαβ on the metric Gµν . If we take
constant dilaton Φ and constant antisymmetric NS-NS field Bµν we obtain
that

Rµν −
1

2
GµνR ∼ (Pαβ)2

µν . (7)

If we choose the background field Pαβ to be constant, in general, we will
have constant Ricci tensor which means that metric tensor is quadratic
function of space-time coordinates. If one wants to cancel non-quadratic
terms originating from back-reaction, additional conditions must be im-
posed on R-R field strength (see the first reference in [33]).

Taking into account above analysis and arguments, our approximation
is realized in the following way

Πµ
± → ∂±x

µ , dα → πα , d̄α → π̄α , (8)

and physical superfields take the form

Aµν = κ(
1

2
Gµν +Bµν) , Eαν = −Ψα

ν , Ēαµ = Ψ̄α
µ ,

Pαβ =
2

κ
Pαβ =

2

κ
e

Φ
2 Fαβ , (9)

where Gµν is metric tensor and Bµν is antisymmetric NS-NS background
field.

Consequently, the full action S is

S = κ

∫
Σ
d2ξ

[
∂+x

µΠ+µν∂−x
ν +

1

4πκ
ΦR(2)

]
(10)

+

∫
Σ
d2ξ

[
−πα∂−(θα + Ψα

µx
µ) + ∂+(θ̄α + Ψ̄α

µx
µ)π̄α +

2

κ
παP

αβπ̄β

]
,

where

Π±µν = Bµν ±
1

2
Gµν . (11)

Actions Sλ and Sλ̄ are decoupled from the rest and can be neglected in the
further analysis.
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3.2. Buscher T-dualization

Let some shift symmetry along xa directions exists. The first step in
Buscher procedure is that we localize the noticed shift symmetry. We sub-
stitute the ordinary derivatives with covariant ones, introducing gauge fields
vaα. Then we add the term 1

2yaF
a
+− to the Lagrangian in order to force the

field strength F a+− to vanish and preserve equivalence between original and
T-dual theories. Finally, we fix the gauge xa = 0 and obtain gauge fixed
action

Sfix(va±, x
i, θα, θ̄α, πα, π̄α) =∫

Σ

d2ξ
[
κva+Π+abv

b
− + κva+Π+aj∂−x

j + κ∂+x
iΠ+ibv

b
−+

+ κ∂+x
iΠ+ij∂−x

j +
1

4π
ΦR(2) − παΨα

b v
b
−

+ va+Ψ̄α
a π̄α − πα∂−(θα + Ψα

i x
i) + ∂+(θ̄α + Ψ̄α

i x
i)π̄α +

1

2κ
e

Φ
2 παF

αβ π̄β

+
κ

2
(va+∂−ya − va−∂+ya)

]
. (12)

Varying the gauge fixed action with respect to the Lagrange multipliers ya
we get the solution for gauge fields in the form

va± = ∂±x
a , (13)

which produces the initial action, while varying with respect to the gauge
fields va± we have

va± = −2κθ̂ab±Π∓bi∂±x
i − κθ̂ab± ∂±yb ± 2θ̂ab±Ψα

±bπ±α . (14)

Substituting va± in (12) we find

Sfix(ya, x
i, θα, θ̄α, πα, π̄α) =∫

Σ

d2ξ

[
κ2

2
∂+yaθ̂

ab
− ∂−yb + κ2∂+yaθ̂

ab
− Π+bj∂−x

j − κ2∂+x
iΠ+iaθ̂

ab
− ∂−yb

+ κ∂+x
i(Π+ij − 2κΠ+iaθ̂

ab
− Π+bj)∂−x

j +
1

4π
ΦR(2)

− πα∂−(θα + Ψα
i x

i − 2κΨα
a θ̂

ab
− Π+bjx

j − κΨα
a θ̂

ab
− yb)

+ ∂+(θ̄α + Ψ̄α
i x

i + 2κΨ̄α
a θ̂

ab
+ Π−bjx

j + κΨ̄α
a θ̂

ab
+ yb)π̄α

+ 2παΨα
a θ̂

ab
− Ψ̄β

b π̄β +
1

2κ
e

Φ
2 παF

αβ π̄β

]
. (15)

Combining two solutions for gauge fields (13) and (14) we obtain trans-
formation law between initial xa and T-dual coordinates ya

∂+(aX)µ̂ = (Q̄−1T )µ̂ν∂+x
ν + J+µ̂ , ∂− (aX)µ̂ = (Q−1T )µ̂ν∂−x

ν + J−µ̂ ,
(16)
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where we introduced the T-dual variables aXµ̂ = {ya, xi}. For coordinates
which contain both xi and ya we will use ”hat” indices µ̂, ν̂. The matrices

Qµ̂ν =

(
κθ̂ab+ 0

−2κΠ−icθ̂
cb
+ δij

)
, Q̄µ̂ν =

(
κθ̂ab− 0

−2κΠ+icθ̂
cb
− δij

)
, (17)

and theirs inverse

Q−1
µν̂ =

(
2Π−ab 0

2Π−ib δji

)
, Q̄−1

µν̂ =

(
2Π+ab 0

2Π+ib δji

)
, (18)

perform T-dualization for vector indices. Here we introduced the currents
J±µ̂

J+µ̂ =

(
J+a

0

)
, J−µ̂ =

(
J−a

0

)
, (19)

where

J±µ = ±2

κ
Ψα
±µπ±α , (20)

Ψα
+µ ≡ Ψα

µ , Ψα
−µ ≡ Ψ̄α

µ , π+α ≡ πα , π−α ≡ π̄α , (21)

and θ̂ab± is defined by the relation

θ̂ac±Π∓cb =
1

2κ
δab . (22)

Note that different chiralities transform with different matrices Qµ̂ν and
Q̄µ̂ν . So, there are two types of T-dual vielbeins

ae
aµ̂ = eaν(QT )νµ̂ , aē

aµ̂ = eaν(Q̄T )νµ̂ , (23)

with the same T-dual metric

aG
µ̂ν̂ ≡ (ae

T η ae)
µ̂ν̂ = (QGQT )µ̂ν̂ = aḠ

µ̂ν̂ ≡ (aē
T η aē)

µ̂ν̂ = (Q̄GQ̄T )µ̄ν̂ .
(24)

The two T-dual vielbeins are related by particular local Lorentz transfor-
mation

aē
aµ̂ = Λab ae

bµ̂ , Λab = eaµ(Q−1Q̄)Tµν(e−1)νb . (25)

From (17) and (18) we have

(Q−1Q̄)Tµν =

(
δab + 2κθ̂ac+ Gcb 2κθ̂ac+ Gcj

0 δij

)
, (26)

which produces

Λab = δab − 2ωab , ωab = −κeaaθ̂ab+ (eT )b
c ηcb . (27)
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It satisfies definition of Lorentz transformations

ΛT ηΛ = η =⇒ det Λab = ±1 , (28)

and it holds det Λab = (−1)d, where d is the number of dimensions along
which we perform T-duality.

Existence of the local Lorentz transformation which connects two sets
of vielbeins means that in T-dual picture we can take that, for example,
nonbar variables remain the same while bar variables must be multiplied
by matrix aΩ, which is a spinorial representation of that local Lorentz
symmetry. Skipping technical details explained in details in [37], we give
here the final form of the matrix aΩ

aΩ =

√√√√ d∏
i=1

Gaiai aΓ (iΓ11)d , (29)

where

aΓ = (i)
d(d−1)

2

d∏
i=1

Γai = (i)
d(d−1)

2 Γa1Γa2 · · ·Γad . (30)

It is easy to check that aΩ
2 = 1.

Let we introduce proper fermionic variables

aθ
α = θα , aπα = πα ,

•θ̄α ≡ aΩ
α
β aθ̄

β , •π̄α ≡ aΩα
β
aπ̄β . (31)

Using the action (15) and proper fermionic variables, we read T-dual back-
ground fields

aΠ
ab
± =

κ

2
θ̂ab∓ , (32)

aΠ±i
a = −κΠ±ibθ̂

ba
∓ , a(Π±)ai = κθ̂ab∓Π±bi , (33)

aΠ±ij = Π±ij − 2κΠ±iaθ̂
ab
∓Π±bj , (34)

aΨ
αa = κθ̂ab+ Ψα

b , aΨ̄
αa = κ aΩ

α
β θ̂

ab
− Ψ̄β

b , (35)

aΨ
α
i = Ψα

i − 2κΠ−ibθ̂
ba
+ Ψα

a , aΨ̄
α
i = aΩ

α
β(Ψ̄β

i − 2κΠ+ibθ̂
ba
− Ψ̄β) ,(36)

e
aΦ
2 aF

αβ = (e
Φ
2 Fαγ + 4κΨα

a θ̂
ab
− Ψ̄γ

b )aΩγ
β . (37)

3.3. Double space

Above expressions for T-dual background fields in the case of full T-duali-
zation are

?Πµν
± ≡ ?Bµν ± 1

2
?Gµν =

κ

2
Θµν
∓ , (38)

?Ψαµ = κΘµν
+ Ψα

ν ,
?Ψ̄αµ = κ?Ωα

β Θµν
− Ψ̄β

ν , (39)
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e
?Φ
2
?Fαβ = (e

Φ
2 Fαγ + 4κΨα

µΘµν
− Ψ̄γ

ν)?Ωγ
β . (40)

Here we use the notation

GEµν = Gµν − 4(BG−1B)µν , Θµν = −2

κ
(G−1

E BG−1)µν , ?Ω = −Γ11, (41)

and

Θµν
± = −2

κ
(G−1

E Π±G
−1)µν = Θµν ∓ 1

κ
(G−1

E )µν . (42)

In this case the T-dual transformation laws (16) obtain the form

∂±x
µ ∼= −κΘµν

± ∂±yν + κΘµν
± J±ν , ∂±yµ ∼= −2Π∓µν∂±x

ν + J±µ . (43)

In terms of double coordinates

ZM =

(
xµ

yµ

)
, (44)

the relations (16) are replaced by one

∂±Z
M ∼= ±ΩMN

(
HNP∂±ZP + J±N

)
, (45)

where the matrix HMN is generalized metric and has the form

HMN =

(
GEµν −2Bµρ(G

−1)ρν

2(G−1)µρBρν (G−1)µν

)
. (46)

The double current J±M is defined as

J±M =

(
2(Π±G

−1)µ
νJ±ν

−(G−1)µνJ±ν

)
, (47)

and

ΩMN =

(
0 1D

1D 0

)
, (48)

is constant symmetric matrix. Here 1D denotes the identity operator in D
dimensions.

It is known that equations of motion of initial theory are Bianchi iden-
tities in T-dual picture and vice versa [9, 13, 16, 38]. From Bianchi identity

∂+∂−Z
M − ∂−∂+Z

M = 0 , (49)

and relation (45), we obtain the consistency condition

∂+

[
HMN∂−Z

N + J−M
]

+ ∂−
[
HMN∂+Z

N + J+M

]
= 0 . (50)
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The equation (50) is equation of motion of the following action

S =
κ

4

∫
d2ξ

[
∂+Z

MHMN∂−Z
N + ∂+Z

MJ−M + J+M∂−Z
M + L(πα, π̄α)

]
,

(51)
where L(πα, π̄α) is arbitrary functional of fermionic momenta.

Let us split coordinate index µ into a and i (a = 0, · · · , d − 1, i =
d, · · · , D − 1) and denote T-dualization along direction xa and ya as

T a = T a ◦Ta , T a ≡ T 0 ◦T 1 ◦ · · · ◦T d−1 , Ta ≡ T0 ◦T1 ◦ · · · ◦Td−1 , (52)

where ◦marks the operation of composition of T-dualizations. Permutation
of the initial coordinates xa with its T-dual ya we realize by multiplying
double space coordinate by the constant symmetric matrix (T a)MN

aZ
M ≡


ya
xi

xa

yi

 = (T a)MNZ
N ≡


0 0 1a 0
0 1i 0 0
1a 0 0 0
0 0 0 1i



xa

xi

ya
yi

 , (53)

where 1a and 1i are identity operators in the subspaces spanned by xa and
xi, respectively. We demand that double T-dual coordinate aZ

M satisfy
the T-duality transformations of the form as initial one ZM (45)

∂± aZ
M ∼= ±ΩMN

(
aHNK ∂± aZ

K + aJ±N
)
. (54)

From this relation we find the T-dual generalized metric

aHMN = (T a)MKHKL(T a)LN , (55)

and T-dual current

aJ±M = (T a)MNJ±N . (56)

Demanding that the T-dual generalized metric aHMN has the same
form as the initial one HMN (46)

aHMN =

(
aG

µν
E −2(aB aG

−1)µν
2(aG

−1
aB)µ

ν (aG
−1)µν

)
, (57)

we obtain the T-dual NS-NS background fields

aΠ
ab
± = κ

2 θ̂
ab
∓ , aΠ

a
±i = κθ̂ab∓Π±bi , (58)

aΠ±i
a = −κΠ±ibθ̂

ba
∓ , aΠ±ij = Π±ij − 2κΠ±iaθ̂

ab
∓Π±bj , (59)

which are in full agreement with those from the Refs.[6, 14].
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The T-dual current aJ±M (56) should have the same form as initial one
(47) but in terms of the T-dual background fields

2(aΠ± aG
−1)ab (aJ)b± + 2(aΠ± aG

−1)ai (aJ)±i
2(aΠ± aG

−1)ia (aJ)a± + 2(aΠ± aG
−1)i

j (aJ)±j
−(aG

−1)ab (aJ)b± − (aG
−1)a

i (aJ)±i
−(aG

−1)ia (aJ)a± − (aG
−1)ij (aJ)±j

 =

 −(G−1)aµJ±µ
2(Π±G

−1)i
µJ±µ

2(Π±G
−1)a

µJ±µ
−(G−1)iµJ±µ

 .

(60)
From the lower D components of the above equation, after straightforward
calculation we get

aΨ
αa = κθ̂ab+ Ψα

b , aΨ̄
αa = κ aΩ

α
β θ̂

ab
− Ψ̄β

b . (61)

aΨ
α
i = Ψα

i − 2κΠ−ibθ̂
ba
+ Ψα

a , aΨ̄
α
i = aΩ

α
β(Ψ̄β

i − 2κΠ+ibθ̂
ba
− Ψ̄β

a) . (62)

which is in full agreement with results obtained applying standard Buscher
procedure. The upper D components of Eq.(60) produce the same result
for T-dual background fields.

The R-R field strength Fαβ appears in the action (10) coupled with
fermionic momenta πα and π̄α along which we do not perform T-dualization.
Let us suppose that fermionic term L(πα, π̄α) (51) in the form

L = e
Φ
2 πα F

αβπ̄β + e
aΦ
2 aπα aF

αβ
aπ̄β ≡ L+ aL , (63)

for some Fαβ and aF
αβ. This term should be invariant under T-dual trans-

formation
aL = L+ ∆L . (64)

Taking into account the fact that two successive T-dualization are identity
transformation, we obtain that the T-dual R-R field strength has the form

e
aΦ
2 aF

αβ = (e
Φ
2 Fαγ + cΨα

a θ̂
ab
− Ψ̄γ

b )aΩγ
β . (65)

For c = 4κ we obtain the agreement with the expression (37).

4. Fermionic T-dualization

4.1. Action

We start with the action (1). In order to perform fermionic T-duality we
must avoid explicit dependence of background fields on the fermionic coor-
dinates θα and θ̄α and allow only dependence on the σ and τ derivatives of
these coordinates. This assumption produces that the auxiliary superfields
are zero what can be seen from Eq.(5.5) of Ref.[32].

We choose that Gµν , Bµν , Φ, Ψα
µ and Ψ̄α

µ are constant, and correspond-

ing field strengths, Ωµ,νρ(Ωµν,ρ), C
α
µν(C̄µν

α) and Sµν,ρσ, are zero. The only
nontrivial contribution of the quadratic terms in equations of motion (see
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[36]) comes from constant field strength Pαβ. In order to analyze this issue
we will use relations from Eq.(3.6) of Ref.[32] labeled by (1

2 ,
3
2 ,

3
2)

DαPβγ − 1

4
(Γµν)α

βC̄µν
γ = 0 , D̄αPβγ − 1

4
(Γµν)α

γCβµν = 0 . (66)

Here

Dα =
∂

∂θα
+

1

2
(Γµθ)α

∂

∂xµ
, D̄α =

∂

∂θ̄α
+

1

2
(Γµθ̄)α

∂

∂xµ
, (67)

are superspace covariant derivatives and Cαµν and C̄µν
α are field strengths

for gravitino fields Ψα
µ and Ψ̄α

µ, respectively. In order to perform fermionic

T-dualization along all fermionic directions, θα and θ̄α, we assume that
they are Killing spinors which means

∂Pβγ

∂θα
=
∂Pβγ

∂θ̄α
= 0 . (68)

From the equations (66) it follows

(Γµ)αδ∂µPβγ = 0 . (69)

Our choice of constant Pαβ is consistent with this condition.
Under these assumptions the final form of the action is given by the

expression (10). The fermionic part of the action (10) has the form of the
first order theory. On the equations of motion for fermionic momenta πα
and π̄α,

πα = −κ
2
∂+

(
θ̄β + Ψ̄β

µx
µ
)

(P−1)βα , π̄α =
κ

2
(P−1)αβ∂−

(
θβ + Ψβ

µx
µ
)
,

(70)
the action gets the form

S(∂±x, ∂−θ, ∂+θ̄) = κ

∫
Σ

d2ξ∂+x
µΠ+µν∂−x

ν +
1

4π

∫
Σ

d2ξΦR(2)

+
κ

2

∫
Σ

d2ξ∂+

(
θ̄α + Ψ̄α

µx
µ
)

(P−1)αβ∂−
(
θβ + Ψβ

νx
ν
)

= κ

∫
Σ

d2ξ∂+x
µ

[
Π+µν +

1

2
Ψ̄α
µ(P−1)αβΨβ

ν

]
∂−x

ν +
1

4π

∫
Σ

d2ξΦR(2) (71)

+
κ

2

∫
Σ

d2ξ
[
∂+θ̄

α(P−1)αβ∂−θ
β + ∂+θ̄

α(P−1Ψ)αµ∂−x
ν

+ ∂+x
µ(Ψ̄P−1)µα∂−θ

α
]
.
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We notice that theory has a local symmetry

δθα = εα(σ+) , δθ̄α = ε̄α(σ−) , (σ± = τ ± σ) . (72)

The corresponding BRST transformations are

sθα = cα(σ+) , sθ̄α = c̄α(σ−) , (73)

where for each gauge parameter εα(σ+) and ε̄α(σ−) we introduced the ghost
fields cα(σ+) and c̄α(σ−), respectively. Here s denotes BRST nilpotent
operator.

To fix gauge freedom we introduce gauge fermion with ghost number
−1

Ψ =
κ

2

∫
d2ξ

[
C̄α

(
∂+θ

α +
ααβ

2
b+β

)
+

(
∂−θ̄

α +
1

2
b̄−βα

βα
)
Cα

]
, (74)

where ααβ is arbitrary non singular matrix, C̄α and Cα are antighost fields,
while b+α and b̄−α are Nakanishi-Lautrup auxillary fields which satisfy

sCα = b+α , sC̄α = b̄−α , sb+α = 0 sb̄−α = 0 . (75)

BRST transformation of gauge fermion Ψ produces the gauge fixed and
Fadeev-Popov action

sΨ = Sgf + SFP ,

Sgf =
κ

2

∫
d2ξ

[
b̄−α∂+θ

α + ∂−θ̄
αb+α + b̄−αα

αβb+β
]
,

SFD =
κ

2

∫
d2ξ

[
C̄α∂+c

α + (∂−c̄
α)Cα

]
. (76)

The Fadeev-Popov action is decoupled from the rest and, consequently, it
can be omitted in further analysis. On the equations of motion for b-fields

b+α = −(α−1)αβ∂+θ
α , b̄−α = −∂−θ̄β(α−1)βα , (77)

we obtain the final form of the BRST gauge fixed action

Sgf = −κ
2

∫
d2ξ∂−θ̄

α(α−1)αβ∂+θ
β . (78)

4.2. Fermionic T-duality using Buscher rules

As in the bosonic case we introduce gauge fields vα± and v̄α± and replace
ordinary world-sheet derivatives with covariant ones

∂±θ
α → D±θ

α ≡ ∂±θα + vα± , ∂±θ̄
α → D±θ̄

α ≡ ∂±θ̄α + v̄α± . (79)
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In order to make the fields vα± and v̄α± to be unphysical we add the following
terms in the action

Sgauge(ϑ, v±, ϑ̄, v̄±) =
1

2
κ

∫
Σ

d2ξϑ̄α(∂+v
α
− − ∂−vα+) +

1

2
κ

∫
Σ

d2ξ(∂+v̄
α
− − ∂−v̄α+)ϑα ,

(80)
where ϑα and ϑ̄α are Lagrange multipliers. The full gauge invariant action

is of the form

Sinv(x, θ, θ̄, ϑ, ϑ̄, v±, v̄±) = S(∂±x,D−θ,D+θ̄)

+ Sgf (D−θ,D+θ̄) + Sgauge(ϑ, ϑ̄, v±, v̄±) . (81)

Fixing θα and θ̄α to zero we obtain the gauge fixed action

Sfix = κ

∫
Σ

d2ξ∂+x
µ

[
Π+µν +

1

2
Ψ̄α
µ(P−1)αβΨβ

ν

]
∂−x

ν +
1

4π

∫
Σ

d2ξΦR(2)

+
κ

2

∫
Σ

[
v̄α+(P−1)αβv

β
− + v̄α+(P−1)αβΨβ

ν∂−x
ν

+ ∂+x
µΨ̄α

µ(P−1)αβv
β
− − v̄α−(α−1)αβv

β
+

]
+
κ

2

∫
Σ

d2ξϑ̄α(∂+v
α
− − ∂−vα+) +

κ

2

∫
Σ

d2ξ(∂+v̄
α
− − ∂−v̄α+)ϑα . (82)

Varying the above action with respect to the Lagrange multipliers we
obtain the initial action (71) because

∂+v
α
− − ∂−vα+ = 0 =⇒ vα± = ∂±θ

α , ∂+v̄
α
− − ∂−v̄α+ = 0 =⇒ v̄α± = ∂±θ̄

α .
(83)

On the other side, the equations of motion for vα± and v̄α± give

v̄α− = ∂−ϑ̄βα
βα , v̄α+ = ∂+ϑ̄βP

βα − ∂+x
µΨ̄α

µ , (84)

vα+ = −ααβ∂+ϑβ , vα− = −Pαβ∂−ϑβ −Ψα
µ∂−x

µ . (85)

Substituting these expressions in the action Sfix we obtain the fermionic
T-dual action

?S(∂±x, ∂−ϑ, ∂+ϑ̄) = κ

∫
Σ

d2ξ∂+x
µΠ+µν∂−x

ν +
1

4π

∫
Σ

d2ξ ?ΦR(2) ,

+
κ

2

∫
Σ

d2ξ
[
∂+ϑ̄αP

αβ∂−ϑβ

− ∂+x
µΨ̄α

µ∂−ϑα + ∂+ϑ̄αΨα
µ∂−x

µ − ∂−ϑ̄αααβ∂+ϑβ
]
. (86)

We read fermionic T-dual background fields

?Ψαµ = (P−1Ψ)αµ ,
?Ψ̄µα = −(Ψ̄P−1)µα , (87)
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?Pαβ = (P−1)αβ ,
?ααβ = (α−1)αβ . (88)

From the condition

?Π+µν +
1

2
?Ψ̄αµ (?P−1)αβ ?Ψβν = Π+µν , (89)

the fermionic T-dual metric and Kalb-Ramond field are

?Gµν = Gµν +
1

2

[
(Ψ̄P−1Ψ)µν + (Ψ̄P−1Ψ)νµ

]
,

?Bµν = Bµν +
1

4

[
(Ψ̄P−1Ψ)µν − (Ψ̄P−1Ψ)νµ

]
. (90)

We obtain T-dual transformation laws combining the different solutions
of equations of motion for vα± and v̄α± (83) and (84)-(85)

∂−θ
α ∼= −Pαβ∂−ϑβ −Ψα

µ∂−x
µ , ∂+θ̄

α ∼= ∂+ϑ̄βP
βα − ∂+x

µΨ̄α
µ , (91)

∂+θ
α ∼= −ααβ∂+ϑβ , ∂−θ̄

α ∼= ∂−ϑ̄βα
βα . (92)

From these relations we can obtain inverse transformation rules

∂−ϑα ∼= −(P−1)αβ∂−θ
β − (P−1)αβΨβ

µ∂−x
µ ,

∂+ϑ̄α ∼= ∂+θ̄
β(P−1)βα + ∂+x

µΨ̄β
µ(P−1)βα , (93)

∂+ϑα ∼= −(α−1)αβ∂+θ
β , ∂−ϑ̄α ∼= ∂−θ̄

β(α−1)βα . (94)

4.3. Fermionic T-dualization using double space

Now we will extend the meaning of the double space and double both
fermionic coordinate as

ΘA =

(
θα

ϑα

)
, Θ̄A =

(
θ̄α

ϑ̄α

)
. (95)

The transformation laws, (91)-(94), can be rewritten in the form

∂−ΘA ∼= −ΩAB
[
FBC∂−ΘC + J−B

]
, ∂+Θ̄A ∼=

[
∂+Θ̄CFCB + J̄+B

]
ΩBA ,

(96)

∂+ΘA ∼= −ΩABABC∂+ΘC , ∂−Θ̄A ∼= ∂−Θ̄CACBΩBA , (97)

where ”fermionic generalized metric” FAB has the form

FAB =

(
(P−1)αβ 0

0 P γδ

)
, (98)
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and

AAB =

(
(α−1)αβ 0

0 αγδ

)
. (99)

The double currents, J̄+A and J−A, are of the form

J̄+A =

(
(Ψ̄P−1)µα∂+x

µ

−Ψ̄α
µ∂+x

µ

)
, J−A =

(
(P−1Ψ)αµ∂−x

µ

Ψα
µ∂−x

µ

)
. (100)

Let us introduce the permutation matrix

T AB =

(
0 1
1 0

)
, (101)

so that double T-dual coordinates are

?ΘA = T ABΘB , ?Θ̄A = T ABΘ̄B . (102)

As in the case of bosonic T-dualization, from demand that T-dual transfor-
mation laws for T-dual coordinates ?ΘA and ?Θ̄A have the same form as for
initial ones ΘA and Θ̄A we get the fermionic T-dual ”generalized metric”
?FAB and T-dual currents, ?J̄+A and ?J−A
?FAB = TACFCDT DB , ?J̄+A = TABJ̄+B ,

?J−A = TABJ−B . (103)

The matrix AAB transforms as

?AAB = TACACDT DB = (A−1)AB . (104)

From the first relation in (103) we obtain the form of the fermionic
T-dual R-R background field

?Pαβ = (P−1)αβ , (105)

while from the second and third equation we obtain the form of the fermionic
T-dual NS-R background fields

?Ψαµ = (P−1)αβΨβ
µ ,

?Ψ̄αµ = −Ψ̄β
µ(P−1)βα . (106)

The non singular matrix ααβ transforms as

(?α)αβ = (α−1)αβ . (107)

As in the case of bosonic T-dualization, in the same way how we ob-
tained the double action (51), we get the double action corresponding to
the fermionic T-dual transformation law

Sdouble(Θ, Θ̄) = (108)

=
κ

2

∫
d2ξ

[
∂+Θ̄AFAB∂−ΘB + J̄+A∂−ΘA + ∂+Θ̄AJ−A

− ∂−Θ̄AAAB∂+ΘB + L(x)
]
,
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where L(x) is arbitrary functional of the bosonic coordinates. In order to
find fermionic T-dual metric and Kalb-Ramond field we suppose that term
L(x) has the form

L(x) = 2∂+x
µ (Π+µν + ?Π+µν) ∂−x

ν ≡ L+ ?L . (109)

This term should be invariant under T-dual transformation

?L = L+ ∆L . (110)

Using the fact that two successive T-dualization are identity transforma-
tion, we obtain

L = ?L+ ?∆L . (111)

Combining last two relations we get

?∆L = −∆L . (112)

If ∆L = 2∂+x
µ∆µν∂−x

ν , we obtain the condition for ∆µν

?∆µν = −∆µν . (113)

Using the relations (87) and (88) we realize that, up to multiplication
constant, combination

∆µν = Ψ̄α
µ(P−1)αβΨβ

ν , (114)

satisfies the condition (113). So, we conclude that

?Π+µν = Π+µν + cΨ̄α
µ(P−1)αβΨβ

ν , (115)

where c is an arbitrary constant. For c = 1
2 we obtain the relations (90).

5. Conclusions

In this article we showed that the new interpretation of T-dualization pro-
cedure in double space formalism offered in [26, 27] is also valid in the case
of type II superstring theory - both for bosonic and fermionic T-dualization.
We used the ghost free action of type II superstring theory in pure spinor
formulation in the approximation of quadratic terms and constant back-
ground fields. One can obtain this action from action (1) under some set
of assumptions.

We introduced the double space coordinate ZM = (xµ, yµ) adding to
all bosonic initial coordinates, xµ, the T-dual ones, yµ. Then we rewrote
the T-dual transformation laws (43) in terms of double space variables (45)
introducing the generalized metric HMN and the current J±M . Further,
we split initial coordinates xµ in two parts: xa are directions along which
we made T-dulization and the rest ones xi.
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T-dualization is realized as permutation of the subsets xa and ya in the
double space coordinate ZM . Demanding that T-dual double space coor-
dinates aZ

M = (T a)MNZ
N satisfy the T-dual transformation law of the

same form as the initial coordinates ZM we found the T-dual generalized
metric aHMN and the T-dual current aJ±M . Consequently, we obtained
the form of NS-NS and NS-R T-dual background fields in terms of the ini-
tial ones which are in full accordance with the results obtained by Buscher
T-dualization procedure [6, 7].

In order to obtain T-dual R-R field strength Fαβ we should make some
additional assumptions. Supposing that term L(πα, π̄α) (51) is T-dual in-
variant and taking into account that two successive T-dualizations act as
identity operator, we found the form of T-dual R-R field strength up to
one arbitrary constant c. For c = 4κ we get the T-dual R-R field strength
aF

αβ as in Buscher procedure [6].
In the case of fermionic T-duality, using equations of motion with re-

spect to the fermionic momenta πα and π̄α, we eliminated them from the
action. Then we fixed local chiral gauge invariance using BRST approach.

Using the Buscher approach we performed fermionic T-duality proce-
dure and obtained the form of the fermionic T-dual background fields.
Analogously with the bosonic case we introduced double fermionic space
doubling the initial coordinates θα and θ̄α with their fermionic T-duals,
ϑα and ϑ̄α. Double fermionic space is spanned by the coordinates ΘA =
(θα, ϑα) and Θ̄A = (θ̄α, ϑ̄α). Demanding that T-dual transformation laws
for fermionic T-dual double coordinates, ?ΘA = T ABΘB and ?Θ̄A = T ABΘ̄B,
are of the same form as those for ΘA and Θ̄A, we obtained the form of the
fermionic T-dual NS-R and R-R background fields which are in full ac-
cordance with the results obtained by standard Buscher procedure. The
expressions for T-dual metric ?Gµν and Kalb-Ramond field ?Bµν cannot
be found from double space formalism because they do not appear in the
T-dual transformation laws. These expressions, up to arbitrary constant,
are obtained assuming that two successive T-dualization act as identity
transformation.
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