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Abstract

We study the open deformed XXX spin chain. In particular we obtain the
explicit expression of the Sklyanin monodromy matrix in terms of the entries of
the local Lax operator of the Jordanian chain. These results are essential in the
study of the so-called quasi-classical limit of the system.

1. Introduction

A particularly interesting feature of quantum groups is the so-called twist
transformation [1]. It yields new quantum groups form already known ones.
More precisely, a twist of a quantum group, or more generally, of a Hopf
algebra A is a similarity transformation of the co-product ∆ : A → A⊗A
by an invertible twist element

∆(a) 7→ ∆t(a) = F∆(a)F−1, ∀a ∈ A. (1)
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In order to guarantee the co-associativity property of the twisted co-product
the element F must satisfy the so-called twist equation [1]

F12 (∆⊗ id) (F) = F23 (id⊗∆) (F) , (2)

where

(∆⊗ id)F = (∆⊗ id)
∑
j

f
(1)
j ⊗f

(2)
j =

∑
j

∆
(
f
(1)
j

)
⊗f (2)j ∈ A⊗A⊗A. (3)

Although the twist transformation generates an equivalence relation be-
tween quantum groups they produce different R-matrices. Namely, the
transformation law of the co-product also determines how the correspond-
ing universal R-matrix changes,

R 7→ R(t) = F21RF−1, here F21 =
∑
j

f
(2)
j ⊗ f

(1)
j . (4)

This new R-matrix allows building and studying new integrable models
[2, 3].

2. Deformed Yang R-matrix and the corresponding K-ma-
trix

As our initial step, we briefly review the Jordanian twist element, as a
particular solution of the twist equation. We consider s`(2) generators Sα

with α = +,−, 3, with the commutation relations

[S3, S±] = ±S±, [S+, S−] = 2S3, (5)

and Casimir operator

c2 = (S3)2 +
1

2
(S+S− + S−S+) = (S3)2 + S3 + S−S+ = ~S · ~S. (6)

The universal enveloping algebra U(s`(2)) admits the Jordanian twist ele-
ment [4, 5]

F = exp 2
(
S3 ⊗ σ

)
∈ U (s`(2))⊗ U (s`(2)) , (7)

where

σ =
1

2
log
(
1 + 2θS+

)
. (8)

It straightforward to check that the Jordanian twist element satisfies the
following equations [6]

(∆⊗ id) (F) = F13F23, (id⊗∆t) (F) = F12F13. (9)
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In the equations above the co-product ∆ is the usual co-product of the
U(s`(2)) and ∆t is the twisted co-product. Evidently the equations (9)
imply the twist equation (2) [6]. Thus the the Jordanian twist element (7)
satisfies the Drinfeld twist equation (2).

The XXX Heisenberg spin chain is related to the Yangian Y(s`(2)) and
the SL(2)-invariant Yang R-matrix [7]

R(λ) = λ1 + ηP =

 λ+ η 0 0 0
0 λ η 0
0 η λ 0
0 0 0 λ+ η

 , (10)

where λ is a spectral parameter, η is a quasi-classical parameter. We use
1 for the identity operator and P for the permutation in C2 ⊗ C2.

The universal enveloping algebra of s`(2) is a Hopf sub-algebra of the
Yangian, U(s`(2)) ⊂ Y(s`(2)). Notice that the matrix form of F in the
spin-1/2 representation ρ1/2 is F12 ∈ End(C2 ⊗ C2),

F12 =
(
ρ1/2 ⊗ ρ1/2

)
(F) = 1 + 2θS3 ⊗ S+ =

 1 θ 0 0
0 1 0 0
0 0 1 −θ
0 0 0 1

 , (11)

in particular, in the spin-1/2 representation the generators Sα are given by
the Pauli matrices

Sα =
1

2
σα =

1

2

(
δα3 2δα+

2δα− −δα3

)
.

Therefore the transformation of the Yang R-matrix by the Jordanina twist
element yields the R-matrix of the twisted Yangian Yθ(s`(2)) [8, 9, 6]

RJ(λ) = F21R12(λ)F−112 =

 λ+ η −λθ λθ λθ2

0 λ η −λθ
0 η λ λθ
0 0 0 λ+ η

 , (12)

where F21 = PF12P. In what follows, we will use only twisted R-matrix
(12) and in order to simplify the notation we will omit the symbol J in the
superscript.

The R-matrix (12) satisfies the Yang-Baxter equation

R12(λ− µ)R13(λ)R23(µ) = R23(µ)R13(λ)R12(λ− µ). (13)

By setting θ = −ξη we can guarantee the quasi-classical property

1

λ+ η
R(λ, η, θ)|θ=−ξη = 1 + ηr(λ) +O(η2), (14)
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where r(λ) is the classical r-matrix

r(λ) =


0 ξ −ξ 0
0 − 1

λ
1
λ ξ

0 1
λ − 1

λ −ξ
0 0 0 0

 , (15)

which satisfies the classical Yang-Baxter equation

[r13(λ), r23(µ)] + [r12(λ− µ), r13(λ) + r23(µ)] = 0 (16)

and has the unitarity property r21(−λ) = −r12(λ).
The R-matrix (12) has the so-called regularity property

R(0, η) = ηP, (17)

and the unitarity property

R12(λ)R21(−λ) = g(λ)1, with g(λ) = η2 − λ2. (18)

The PT symmetry is broken

R21(λ) 6= Rt1t212 (λ), (19)

where the indices t1 and t2 denote the respective transpositions in the first
and second space of the tensor product C2 ⊗ C2. The R-matrix does not
have the crossing symmetry, but it satisfies the weaker condition(((

Rt212(λ)
)−1)t2)−1

=
g(λ+ η)

g(λ+ 2η)
M2R12(λ+ 2η)M−12 , (20)

with

M =

(
1 −2θ
0 1

)
.

In [9] it was shown that the general solution to the reflection equation

R12(λ− µ)K−1 (λ)R21(λ+ µ)K−2 (µ) = K−2 (µ)R12(λ+ µ)K−1 (λ)R21(λ− µ)
(21)

is given by

K−(λ) =

(
ζ + λ− φθ

η λ
2 ψλ

φλ ζ − λ− φθ
η λ

2

)
. (22)

Also, the dual reflection equation was derived and it was shown that its the
general solution is given by [9]

K+(λ) = K−(−λ− η)M. (23)
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Final observation is that by setting θ = −ξη we achieve that the matrix
K−(λ) (22) does not depend on the parameter η i.e.,

∂K−(λ)

∂η
= 0. (24)

This is an important step in the so-called quasi-classical limit of the corre-
sponding chain [10, 11, 12, 13].

Using the results obtained above, in the next section, we will study the
open deformed XXX spin chain following Sklyanin’s approach [14] as we
have successfully done in the case of XXX Heisenberg spin chain [10] and
XXZ Heisenberg spin chain [12].

3. Jordanian deformation of the XXX spin chain

The Hilbert space of the system is

H =
N
⊗
m=1

Vm = (C2s+1)⊗N , (25)

we study the deformed inhomogeneous spin chain with N sites, charac-
terised by the local space Vm = C2s+1, corresponding inhomogeneous pa-
rameter αm and the operators

Sαm = 1⊗ · · · ⊗ Sα︸︷︷︸
m

⊗ · · · ⊗ 1, (26)

with α = +,−, 3 and m = 1, 2, . . . , N .
We introduce the Lax operator

L0m(λ) =

(
e−σm 2θS3

me
σm

0 eσm

)

+
η

λ

(
S3
m (1m + 2θS+

m) e−σm
(
S−m − 2θ(S3

m)2
)
eσm

S+
me
−σm −S3

me
σm

)
. (27)

In the case when the quantum space is a spin 1
2 representation, the Lax

operator is equal to the R-matrix, L0m(λ) = 1
λR0m (λ− η/2).

Due to the commutation relations (5), it is straightforward to check
that the Lax operator satisfies the RLL-relations

R00′(λ−µ)L0m(λ−αm)L0′m(µ−αm) = L0′m(µ−αm)L0m(λ−αm)R00′(λ−µ).
(28)

The so-called monodromy matrix

T0(λ) = L0N (λ− αN ) · · ·L01(λ− α1) (29)
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is used to describe the system. Notice that T (λ) is a two-by-two matrix
acting in the auxiliary space V0 = C2, whose entries are operators acting
in H

T (λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
. (30)

From RLL-relations (28) it follows that the monodromy matrix satisfies the
RTT-relations

R00′(λ− µ)T0(λ)T0′(µ) = T0′(µ)T0(λ)R00′(λ− µ). (31)

The RTT-relations define the commutation relations for the entries of the
monodromy matrix.

Also, we define the Lax operator

L̃0m(λ) =

(
eσm −2θeσmS3

m

0 e−σm

)

+
η

λ

(
eσmS3

m eσm
(
S−m − 2θ(S3

m)2
)

e−σmS+
m −e−σm (1m + 2θS+

m)S3
m

)
. (32)

It obeys the following important identity

L0m(λ)L̃0m(η − λ) =
(

1 + η2
sm(sm + 1)

λ(η − λ)

)
10 , (33)

where sm is the value of spin in the space Vm. Thus the monodromy matrix

T̃0(λ) =

(
Ã(λ) B̃(λ)

C̃(λ) D̃(λ)

)
= L̃01(λ+ α1 + η) · · · L̃0N (λ+ αN + η), (34)

obeys the following relations

T̃0′(µ)R00′(λ+ µ)T0(λ) = T0(λ)R00′(λ+ µ)T̃0′(µ), (35)

T̃0(λ)T̃0′(µ)R00′(µ− λ) = R00′(µ− λ)T̃0′(µ)T̃0(λ). (36)

By construction it follows that the entries of the Sklyanin monodromy
matrix

T0(λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
= T0(λ)K−0 (λ)T̃0(λ), (37)

obey the exchange relations of the so-called reflection equation algebra [14,
10, 12]

R00′(λ− µ)T0(λ)R0′0(λ+ µ)T0′(µ) = T0′(µ)R00′(λ+ µ)T0(λ)R0′0(λ− µ).
(38)
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4. Conclusions

The formulae (37), together with (27) and (32), yields, along the lines pre-
viously used successfully in the cases of the XXX and XXZ Heisenberg spin
chains [10, 12], the quasi-classical expansion of the Sklyanin monodromy
of the deformed chain. We believe that these results will help complete
the study of the open deformed Gaudin model which we have initiated in
[6]. Notice that the open trigonometric Gaudin was reviewed in [15]. The
algebraic Bethe ansatz for the periodic deformed Gaudin model was done
in [16, 17]. It is very likely that the implementation of the algebraic Bethe
ansatz for the open deformed Gaudin model would require specific set of
generators of the corresponding generalized Gaudin algebra, as in the s`(2)
case [18]. These considerations will be reported elsewhere.
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