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ABSTRACT

We study the open deformed XXX spin chain. In particular we obtain the
explicit expression of the Sklyanin monodromy matrix in terms of the entries of
the local Lax operator of the Jordanian chain. These results are essential in the
study of the so-called quasi-classical limit of the system.

1. Introduction

A particularly interesting feature of quantum groups is the so-called twist
transformation [1]. It yields new quantum groups form already known ones.
More precisely, a twist of a quantum group, or more generally, of a Hopf
algebra A is a similarity transformation of the co-product A: 4 - A® A
by an invertible twist element

A(a) = Ay(a) = FA(@)F!,  Vac A (1)
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In order to guarantee the co-associativity property of the twisted co-product
the element F must satisfy the so-called twist equation [1]

Fia (A (9 id) (.F) = Fo3 (id X A) (.F) R (2)
where

(A F=@Aeid)Y Mo =S A(1V)ef? € AzazA (3)
J J

Although the twist transformation generates an equivalence relation be-
tween quantum groups they produce different R-matrices. Namely, the
transformation law of the co-product also determines how the correspond-
ing universal R-matrix changes,

R RO = FyRF L, here Fun=Y 7 e rl. (4)

J

This new R-matrix allows building and studying new integrable models
2, 3].

2. Deformed Yang R-matrix and the corresponding K-ma-
trix

As our initial step, we briefly review the Jordanian twist element, as a
particular solution of the twist equation. We consider s/(2) generators S
with o = +, —, 3, with the commutation relations

(83,8%] = +5%, [ST,57] =253, (5)

and Casimir operator
co = (S%)?2 + %(SW* +575T)= (8?2 +8+557=5.5.  (6)

The universal enveloping algebra U(s¢(2)) admits the Jordanian twist ele-
ment [4, 5]

F=exp2(S®®0) €U (s(2)@U (s£(2)), (7)
where

o= %log (14205T). (8)

It straightforward to check that the Jordanian twist element satisfies the
following equations [6]

(A X id) (./—") = f13f23, (id [ At) (.7:) = f12f13. (9)
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In the equations above the co-product A is the usual co-product of the
U(sf(2)) and Ay is the twisted co-product. Evidently the equations (9)
imply the twist equation (2) [6]. Thus the the Jordanian twist element (7)
satisfies the Drinfeld twist equation (2).

The XXX Heisenberg spin chain is related to the Yangian )(s¢(2)) and
the SL(2)-invariant Yang R-matrix [7]

A+n 0 0 0
_ _ 0O X n 0

RN =AL+nP=| o . X o | (10)
0 0 0 Atp

where A is a spectral parameter, n is a quasi-classical parameter. We use
1 for the identity operator and P for the permutation in C? @ C?.

The universal enveloping algebra of s¢(2) is a Hopf sub-algebra of the
Yangian, U(sf(2)) C Y(sf(2)). Notice that the matrix form of F in the
spin-1/2 representation p; /o is Fia € End(C? ® C?),

166 0 0
010 O

Fip = (,01/2 ® ,01/2) (F)=1+ 205° © St = 001 —6 |- (11)
0 0 0 1

in particular, in the spin-1/2 representation the generators S¢ are given by

the Pauli matrices
1 1 0a3 200+
a__ T o [ o
S - 20 2 < 25a7 _5043 >

Therefore the transformation of the Yang R-matrix by the Jordanina twist
element yields the R-matrix of the twisted Yangian YVy(s£(2)) [8, 9, 6]

A+ =M N AG2
0 X 15 -\
0 7 A A |
0 0 0 A+

RI(\) = Py Ris V) FR' = (12)

where Fb; = PF19P. In what follows, we will use only twisted R-matrix
(12) and in order to simplify the notation we will omit the symbol J in the
superscript.

The R-matrix (12) satisfies the Yang-Baxter equation

Ria(A = p)Rig(A) Ras(p) = Ros(p) Riz(A) Ri2(A — p). (13)
By setting § = —£n we can guarantee the quasi-classical property
RO, 0)lo=—gy = 1 +1r(A) + O(n?), (14)

A+7n
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where r()) is the classical r-matrix

0 & =¢ 0
_1 1
rv={ g 1 ¢ (15)
0 0 0 0

which satisfies the classical Yang-Baxter equation

[r13(A), r23()] + [r12(A — p), r13(A) + r23(p)] = 0 (16)

and has the unitarity property ro1(—A) = —r12(A).
The R-matrix (12) has the so-called regularity property

R(0,n) =P, (17)
and the unitarity property
Ria(M)Ra1(=A) = g(M)1,  with g(A) =»n* — % (18)
The PT symmetry is broken
Ra1(\) # Riy*(N), (19)

where the indices t; and to denote the respective transpositions in the first
and second space of the tensor product C? ® C2. The R-matrix does not
have the crossing symmetry, but it satisfies the weaker condition

~g(A+2n)

1 -26
=g ).

In [9] it was shown that the general solution to the reflection equation

(((R%(A))l)”)_l = IO g2t (20)

with

Rig(A = ) K (A)Ror (A + ) Ky (1) = Ky (p) Ri2(A + p) Ky (M) Ra1 (A —(2/11))
is given by

_ 002
CHA— 2N ) ) (22

K_(A):< ON C—A— 2y

Also, the dual reflection equation was derived and it was shown that its the
general solution is given by [9]

Kt*(\) =K (=A—n)M. (23)
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Final observation is that by setting § = —&n we achieve that the matrix
K~ ()\) (22) does not depend on the parameter 7 i.e.,

K~ (\)

o =0 (24)

This is an important step in the so-called quasi-classical limit of the corre-
sponding chain [10, 11, 12, 13].

Using the results obtained above, in the next section, we will study the
open deformed XXX spin chain following Sklyanin’s approach [14] as we
have successfully done in the case of XXX Heisenberg spin chain [10] and
XXZ Heisenberg spin chain [12].

3. Jordanian deformation of the XXX spin chain
The Hilbert space of the system is

N
H — mglv — (C28+1)®N, (25)

we study the deformed inhomogeneous spin chain with N sites, charac-
terised by the local space V,, = C?**!, corresponding inhomogeneous pa-
rameter ., and the operators

S =1® -®85* ® o1, (26)

m

witha =+,—,3and m=1,2,..., N.
We introduce the Lax operator

e~Im 20853 eom
Lom(A) =

0 edm
S3 (1, +20S+)e o (S —260(53)%) ™™
+ﬁ m( m)e (m (m))e ' (27)
A Stemom —83 eom

In the case when the quantum space is a spin % representation, the Lax

operator is equal to the R-matrix, Lom(X) = +Rom (A — 1/2).
Due to the commutation relations (5), it is straightforward to check
that the Lax operator satisfies the RLL-relations

Roor (A=) Lom (A—am ) Lorm (—aim) = LO’m(H_am)LOm()\_am)ROO/()‘_(M))'
28
The so-called monodromy matrix

To()\) :]L()N(/\—CBN)H-L(H()\—CH) (29)
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is used to describe the system. Notice that T'(\) is a two-by-two matrix
acting in the auxiliary space Vy = C?, whose entries are operators acting

in H
A(\) B
T = ( CEA; DE)\% ) : (30)

From RLL-relations (28) it follows that the monodromy matrix satisfies the
RTT-relations

Roo' (A — 1) To(MN) T (1) = Tor (1) To(N) Roor (A — ). (31)

The RTT-relations define the commutation relations for the entries of the
monodromy matrix.
Also, we define the Lax operator

~ eom  —20e’mS3,
Lom(N) = Y
0 e om
eom 83 eom (S —20(53)?
+2 ° ™ - )3 L (32
A\ e omSt  —e7m (1,, +20S}+) S
It obeys the following important identity
- +1)
Lom ) Eom(n = A) = (1452 Smlm T Dy, 33
omN)om( = X) = (17 5 o, (33)

where s, is the value of spin in the space V,,,. Thus the monodromy matrix

To(\) = ( ggg ggi% ) — Lo+ a1 +n)---Lov(A +an +1), (34)

obeys the following relations

Ty (1) Roor (A + 1) To(A) = To(A) Roor (A + )Ty (1), (35)
To(N\)Tor (1) Roor (11 — A) = Roor (1 — N Ty (1) To (N). (36)

By construction it follows that the entries of the Sklyanin monodromy
matrix

m0 = (28] B0} ) = HVEs T, (37)

obey the exchange relations of the so-called reflection equation algebra [14,
10, 12]

Roo (A = 1) To(A) Roro (A + 1) Tor (1) = Tor (1) Roor (A + ) To(A) Roro (A — éﬁ?))&
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4. Conclusions

The formulae (37), together with (27) and (32), yields, along the lines pre-
viously used successfully in the cases of the XXX and XXZ Heisenberg spin
chains [10, 12], the quasi-classical expansion of the Sklyanin monodromy
of the deformed chain. We believe that these results will help complete
the study of the open deformed Gaudin model which we have initiated in
[6]. Notice that the open trigonometric Gaudin was reviewed in [15]. The
algebraic Bethe ansatz for the periodic deformed Gaudin model was done
in [16, 17]. It is very likely that the implementation of the algebraic Bethe
ansatz for the open deformed Gaudin model would require specific set of
generators of the corresponding generalized Gaudin algebra, as in the s¢(2)
case [18]. These considerations will be reported elsewhere.
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