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Abstract

Is the three-quark confinement potential better described by the Y-string or
the ∆-string form? In order to answer that question we have re-analysed the recent
lattice QCD calculations by Koma & Koma [1] and the (much) older results of
Takahashi et al. [2] using hyperspherical three-body variables. The (presently)
extant lattice data do not allow a conclusive answer to the above question, but
we show that hyperspherical coordinates lead to: 1) a definitive criterion for the
discrimination between the Y and ∆ strings; and 2) a more discriminating choice
of lattice points to be made; both of these points are based on the dynamical O(2)
symmetry of the Y-string.

1. Introduction

Lattice QCD offers a method to calculate three-quark potentials ab initio.
The calculations are limited by the lattice size as well as by the computing-
and man-power available. The results are therefore subject to systematic
and statistical errors which must be estimated and interpreted as in any
experimental result.
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Figure 1: The ∆ and Y- strings. The ∆-string potential goes as the perime-
ter (sum of sides) of the triangle subtended by the three quarks, whereas
the Y-string potential goes as the sum of lengths from each quark to the
Fermat-Torricelli point of the three quark system.

The form of the three-heavy-quark potential in lattice QCD is not well
known. Two older calculations of the effective static three-quark potential
on the lattice are the one by Alexandrou et al [3], who proposed the ∆-
string form, Fig. 1, and the one by Takahashi et al. [2], who proposed the
Y-string, Fig. 1. In the Y-string description, the potential depends on the
sum of distances from the three quarks to the Fermat-Torricelli point (at
the centre) of the system. In the ∆-string description, the potential goes
as the perimeter (the sum of sides) of the triangle subtended by the three
quarks.

Explicit formulae for the functional forms of the Y and ∆ string po-
tentials are given in Refs. [4, 5, 6]. Both potentials depend linearly on
the “overall size” variable, the hyper-radius R (see Eq. (4) below) of the
three-quark system. One way to distinguish the Y-string from the ∆-string
is to note that the Y-string has an O(2) dynamical symmetry [4, 5, 6].
This dynamical O(2) symmetry is visible to the naked eye when using
permutation-adapted hyper-spherical coordinates, see Fig. 2 in [5]. The
dynamical O(2) symmetry ought to be used in any conclusive attempt to
distinguish between the Y-string and the ∆-string potential.

The recent calculation of the three-quark potential by Koma & Koma
[1], on a larger (244) lattice than before, has re-ignited interest in this
question. These authors did not test the potential for the O(2) dynamical
symmetry, however, so their work cannot be conclusive with regard to the
Y vs. ∆ dilemma.

The aim of this work is to use hyper-spherical coordinates to re-analyse
both the Koma and the Takahashi data so as to see if it is possible on the
basis of presently available lattice data to decide on the Y vs. ∆ dilemma.
We shall show that a clear resolution is not possible, due to an unfortunate
choice of triangle shapes.
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2. Hyper-spherical coordinates

The three bodies’ Cartesian coordinates can be expressed in terms of the
centre-of-mass variable RCM , and the two relative Jacobi vectors ρ and λ.

ρ =
1√
2

(x1 − x2), (1)

λ =
1√
6

(x1 + x2 − 2x3), (2)

RCM =
1

3
(x1 + x2 + x3), (3)

which obscures the permutation symmetry, however. The confining po-
tential must be invariant under: 1) translations - the potential must not
depend on RCM , but only on the relative Jacobi vectors; 2) rotations - the
potential can only depend on the scalar products of ρ and λ. 3) Permu-
tations of particle labels. There is one preferred set of hyper-angles that
makes the permutation symmetry manifest. The hyper-radius R

R2 = ρ2 + λ2 (4)

determines, loosely speaking, the size of the triangle subtended by the
three particles. The hyper-angles α and φ, which describe the shape of
the triangle, are defined as follows

φ = arctan
( 2ρ · λ
ρ2 − λ2

)
(5)

α = arccos
(2(ρ× λ)

ρ2 + λ2

)
(6)

The two hyper-angles determine a point on a unit-radius shape sphere.
Figure 1 in Ref. [6] shows a view of the shape sphere from infinity above
the North Pole.

3. Lattice QCD data in terms of hyper-spherical coordinates

The data from the papers was converted to our symmetric hyper-spherical
coordinates by the equations described in section 2.. All of the data points
are taken from the surface of a single hemisphere of the shape sphere. We
plotted the data points calculated by Takahashi and Koma & Koma in the
x-y projection of the shape sphere. Figure 2 includes all permutations of the
three-body system. There are three lines representing isosceles triangles -
that cross the origin. There are also three lines representing the right-angled
triangles - one such line is at y = −0.5. Equilateral triangles are located
at the center of the circle (origin of the coordinate system). Collinear
configurations all lie on a circle of radius 1 about the origin.
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Figure 2: (a): Hyper-radius as a function of hyper-angles for Koma & Koma
data points. (b): Hyper-radius as a function of hyper-angles for Takahashi
data points.

Note that the two data sets contain strikingly different shapes: whereas
most of the Koma points (triangle shapes) lie outside of the straight lines
(triangle) defined by the right-triangle shapes, most of the Takahashi points
lie inside of this boundary. Note moreover, that most of the Takahashi
points that lie inside the right-triangle lines are low-hyper-radii ones (blue
to greenish color - see the colour code), which makes this data set unsuit-
able to address the Y vs. ∆ dilemma, as one needs high(er) values of the
hyper-radius, so as to suppress the Coulomb term which QCD generates in
addition to the confining part.

4. Analysis of lattice data

Following standard lattice QCD treatises, Refs. [7], [8], we assume that the
total three-quark potential V3q has the form

V3q(α, φ,R) = −A(α, φ)

R
+B(α, φ)R+ C, (7)

henceforth referred to as the Coulomb + linear potential Ansatz. The first
term represents the sum of QCD Coulomb pairwise interactions, which is
dominant at small values of the hyper-radius R. The second term represents
the confinement potential, which is linear in R and dominant at large values
of hyper-radius R, and the third term - C - is a constant. Here A(φ, α)
is assumed to be the (standard) sum of of pair-wise Coulomb terms, and
B(φ, α) is the unknown hyper-angular dependence of the linearly rising
confining potential.

Our initial goal was to determine the unknown hyper-angular depen-
dence B(φ, α) of the linearly rising confining part of the three-quark po-
tential using the lattice data and the well-known hyper-angular and hyper-
radial dependences of the two-body Coulomb term.
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Figure 3: Plot of the hyperangular part of confining potential as a function
of x or y, for isosceles and right-angled triangle configurations in the Koma
& Koma data set - blue line is the ∆ string ad the green line is the Y string
prediction. (l.h.s. panel): Right-angled triangles; (r.h.s. panel): Isosceles
triangles.

Surprisingly, however, Koma & Koma [1] have noticed that the first
term - the sum of pairwise Coulomb terms - does not adequately describe
the lattice data as the hyper-radius R decreases: the discrepancy amounts
up to 26 % of the total Coulomb potential, depending on the shape of the
triangle (see Eq. (34) in Sect. III.E “The functional form of the three-
quark potential”). This indicates existence of a non-negligible three-body
dependence of the QCD Coulomb potential that is not predicted by pertur-
bative QCD calculations. This fact/circumstance additionally complicates
our analysis and attempts to extract B(φ, α).

In order to minimize the influence of the Coulomb term, and of the
constant C1, we have used only lattice configurations that are either (a) far
away from the two-body collision points, where the Coulomb term rises to
infinity, on the shape sphere; or (b) have large values of the hyper-radius
R, where the Coulomb term is suppressed as compared with the confining
term. There are only a few such sets of such configurations in the Koma
and the Takahashi data sets: (i) the isosceles; (ii) the right-angled triangles.
We shall use them both.

(i) It can be seen in Fig. 3.b that for the isosceles triangle configurations
φ = const. in the Koma & Koma data set, the B(α) values form a (more or
less continuous) line in between the ∆ and Y-string potentials’ functional
forms. This result supports the conclusions of the Koma & Koma [1] that
the three-quark potential is neither pure Y nor pure ∆ string. The Taka-
hashi data set does not fit well with either functional form and is strongly
scattered.

1Of course, there is the possibility that the “constant” C is actually a function of the
shape-sphere angles C(φ, α).
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(ii) The right-angled triangle configurations provide little insight: The
functional forms for the Y and ∆ string potentials are almost identical
and do not allow clear separation. The Koma & Koma data points follow
a similar shape in Fig. 3.a, but could be attributed to either functional
form. In the Takahashi data set the points are too scattered to draw any
conclusion.

5. Conclusions

We have analysed the lattice QCD data, Refs. [2, 1] in terms of permutation-
adapted hyperspherical variables with a view towards resolving the ∆ vs.
Y string dilemma.

The analysis along the lines of isosceles triangles gives no conclusive
answer to the question of the confinement potential form, in agreement
with Ref. [1]. The Takahashi data, Ref. [2], is too scattered, while the
Koma & Koma data, Ref. [1], suggests some mixture of the Y and ∆
string. Similarly, the values of the potential for the right-angled triangle
configurations provide little insight into the ∆ vs. Y string dilemma.

This calls for new lattice calculations, where: 1) there is a constant
hyper-radius; and 2) one of the hyper-angles is held constant while varying
the other.
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[4] V. Dmitrašinović, T. Sato and M. Šuvakov , Phys. Rev. D 80, 054501 (2009).

[5] M. Šuvakov, and V. Dmitrašinović, Phys. Rev. E 83, 056603 (2011).
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