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ABSTRACT

We consider nonlocal modified Einstein gravity without matter, where nonlocal
term is of the form P(R)F(0)Q(R). Equations of motion are usually very complex.
In this paper we present the derivation of the first and second variation of the action
(1). The equations of motion are given. We give the expressions for perturbations
in scalar, vector and tensor form.

1. Introduction

Although very successful, Einstein theory of gravity is not a final theory.
There are many its modifications, which are motivated by quantum gravity,
string theory, astrophysics and cosmology (for a review, see [2]). One of
very promising directions of research is nonlocal modified gravity and its
applications to cosmology (as a review, see [3] and [4]).

Under nonlocal modification of gravity we understand replacement of
the scalar curvature R in the Einstein-Hilbert action by a suitable function
F(R,D,D_l,RWR“”,RWagR“Wﬁ,...), where O = V,V# is d’Alembert
operator and V,, denotes the covariant derivative. As a review see [7, 6, 5]
and references therein. Here, nonlocality means that Lagrangian contains
an infinite number of space-time derivatives, i.e. derivatives up to an infinite
order in the form of d’Alembert operator [ which is argument of an analytic
function.

In the sequel we consider nonlocal modification of gravity where Einstein-
Hilbertaction contains an additional nonlocal term of the form P(R)F(0O)Q(R).
In particular we consider a class of nonlocal gravity models without matter,
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given by the following action

1
167G

/M (R—2A+ P(RFO)QR) v_gd'z, (1)

where M is pseudo-Riemann manifold of signature (1,3) with metric (g, ),

o0
F(O) = Z f20", P and @ are differentiable functions of the scalar curva-
n=0
ture R and A is cosmological constant. The corresponding Einstein equa-
tions of motion are complex. In this paper we will present their derivation.
In order to obtain equations of motion for g, we have to find the variation
of the action (1) with respect to metric g*”. In addition we also find the
second variation of the action (1) and consider some cosmic perturbations.

2. Variation of curvature tensors

Let us start with a technical lemma:

Lemma 1. The following relations hold

69 = 99" 69 = —99u 09", (2)
1
6\/j = _igltu\/jgéguy7 (3)
1 (0% (07 o
5F;>;u = _5 (guavpdg)\ + gyavuég/\ - g,uaguﬁv/\(sg B) ) (4)

where g is the determinant of the metric tensor.

Lemma 2. The variation of Riemman tensor, Ricci tensor and scalar cur-
vature satisfy the following relations

SRy = V0T, — V, 000, (6)
R = R,,,0g"" — K,,,69"", (7)
5VMVV¢ = VMVV&/J - v)ﬂ/}(srﬁw (8)

where K, = V,V, — g, 0.

Lemma 3. Every scalar function P(R) satisfies

/ PK,,09""\/—g diz = / K P 6g"'\/—g d*z. (9)
M M
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Proof. At the beginning we prove [, Pgu, (36g"")/—g d*z = [}, g0 (OP)dg" /=g d*z
by application of Stokes’ theorem:

/ Pg,,06g" /=g d*z = —/ Va(Pguw)V*5g"/—g d*z

M M

(10)

:/ g;WDP 69#V\/jgd4x'
M

Let ZF = PV, 09" =V, Pég"¥. Integration over M yields fM VuZ'\/—g diz =
J. o 241, dOM, where ny, is the unit normal to a hypersurface OM. Since
the restriction Z* |5y vanish, we obtain

/ PV, V,6g"\/—g d*z = / V.V, P §g"\/—g d*z. O
M M

Lemma 4. Let P(R) and Q(R) be scalar functions. Then for alln € N
n—1
1
/ PSO"Qy/—g d*z = = Z / S, (O P, O 1Q)eg™ /—g d*x
M 2= Jm

+ /M O"P §Q/—g d*z. (11)
Proof. The definition of the [J operator implies
I= /M PSO"Q/—g dix = /M P§(g"'V,V, 0" 1Q)y/—g d*z
_ /M P (V,V, O 1Qég" + g6V, v,0"1Q) v—g d'z

_ / P (V,NV 0" 1Qég" + Ds0n1Q — VAD"‘ng“”(EFﬁ,,) V=g d*z.
M
(12)
Moreover, from the Lemma 3 and Stokes’ theorem we get
I= / P(V,V,0" ' Qég" + 060"~ Q
M
1
+§V,\D”_1Q(2Vuégm — gWV’\(Sg“”)) V=g d*z

:/ P OO Q=g d%;—/ VPV, 0" 'Qsg" /=g d'x  (13)
M M

1

-5 / 9 (VAPVA\OIQ 4+ POO™1Q)0g" v/ —g d*a
M

1
:/ P OSO Q=g diz + 2/ (P, 071 Q)6g" /=g d*z.
M M
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Partial integration in the first term of the pervious formula completes
the proof.

O
Theorem 1. Let P and Q be scalar functions of scalar curvature, then
1
/ P§(v/—g) d'z = —/ guPég"\/—g d*x, (14)
M 2/
/ PSR\/—g d*z = / (RuP — K,,,P) 6g"\/—g d*z, (15)
M M

/ PS(F(D)Q)y/—g d'x = / (R — Kpu) (QF(O)P) g™ y—g d'x
M M

00 n—1
1
508 [ suonoau
=1 =0

(16)
where S, (A, B) = ¢/ V*AV 4B + ¢, A0B — 2V, AV, B.
Proof. Equation (14) is a consequence of (3).
From Lemma 2 and Lemma 3 we get
/ PSR/ —g d*z = / (Ru PSg"” — PK,,69") /—g d*z

_ / (R P — K, P) 3"/ —g d'a.
M

To prove (16) let us introduce the following notation J,, = [,, P6(0"Q)/—g d*z.
Then [,, PS(F(O)Q)yv/—g d*x = 32 faJn. The integral Jy is calculated

by applying (15). For n > 0 integral J, is calculated by applying Lemma
4 and (15).

J, = / (R,QO"P — K,,(Q'0"P)) 6" /=g d'z
M

n—1
1
+-) / S, (OLP, O 11Q) 5 g /=g d'a. (18)
25 v

Summation over n yields equation (16). O
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3. Equations of motion

Let us consider the action (1). In order to calculate 6S we introduce the
following auxiliary actions

Sy = /M(R —2A) /—g d*z, (19)
51 = /M P(R)F(O)Q(R) v/=g d'z. (20)

Action Sy is Einstein-Hilbert action and its variation is
0S5y = / (G + Agu) 69" /—g d*z. (21)
M
Lemma 5. Variation of the action Sy is

881 = —% /M 9uwP(R)F(O)Q(R)dg" /—g d*x

+ / (RuwW — K, W) g /—g d*x
M

. anZ / S, (O'P(R), O QR))0g™ V=g d'a,  (22)
n=1

where W = P'(R)F(O)Q(R) + Q'(R)F(O)P(R).

Theorem 2. Variation of the action (1) is equal to zero iff

N 1 1
G =G + Aguw — §9uvP(R)I(D)Q(R) + (RuwW — KwW) + §qu =0,
(23)

where

W =P (R)F(D)Q(R) + Q'(R)F(O)P(R), (24)

W—Zf S S (O'P(R), 0" 1Q(R) ) . (25)
=0

Proof. The proof of the Theorem is evident from the Lemma 5 and Theorem
1. O
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4. Second variation of the action

In the following section we set h,, = dg,,. From Lemma 2 we see that
h# = —6gt¥. Also let h = g"”h,,, be the trace of hy,,.

Operator 00J is defined by (00)V = ¢(0V) —OdV. Then we can prove
the following Lemma

Lemma 6. Let U,V be scalar functions. Then
y 1
(OO)W = "V, V,V — VFR VAV + 5vAthV, (26)
1
/ UO)Wy/—g diz = 3 / S, (U, V)dg /=g d*a. (27)
M M

In the next lemma we find the variation of F(OJ).

Lemma 7. Let U,V be scalar functions. Then,

00 n—1
/ US(FO)VV=gde =Y fu) / S, (O, O 11y 5gh /=g A

Proof. Note that 600" = > T}(60)0" 1~ for n > 0 and §01° = §1d = 0.
Therefore sumation over n and integration yields

[e'e) n—1
/ US(FO)Vy=gdiz=>fa Z/ vt eo)aOn vy =g diax
M 0 M

n=1 =
(29)
o] n—1
= anZ/ D'u(soyon—1-1v /=g d'z (30)
n=1 1=0’M
e ) n—1
:anz/ S, (O'U, 0" 1) g /=g d'a. (31)
n=1 1=0"M
O

Lemma 8. Let U be scalar function. Then,

/ USW+/—g d'z = / (RuwY — K.Y + %\I/W)ag“”\/fg dz, (32)
M M
Y =U(P'FO)Q+Q"FO)P) + (PFO)QU)+ QFO)(PU ))7(33)
+o00 n—1
U =D a3 (ST P0), Q) + 5,(0'(QU), 0" 1P))
=1 0

=
(34)
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Lemma 9. Let A, B be scalar functions. Then,
/ S, (8A, B)3gh /—g d*x = /al(B)dA\/—g d*z, (35)
M
/ Suw(A,6B)og" /—g d*x = /O’Q(A)éB\/—g d*z, (36)
M

where

01(B) = V*hV\B — 2V ,,h**V,B — 2"V ,V, B, (37)
o3(A) = =V AV A — AOh — 2V, WV, A — 207"V ,V, A. (38)

Proof. To prove the first equation recall the definition of S, (A, B)

/M S, (8A, B)ogh”/—g d*x (39)
= /M (V¥(hV4B) — kOB — 2V ,(h**V,B)) §Ay/—g d*z  (40)
- /M o1(B)§Ay/—g d*z. (41)
The proof of the second equation is similar. O

Lemma 10. Let Q. = 3001 fu 370 S (OWP(R), 0" 1'Q(R)). Then,
/ 009" /=g dz
M

+oo n—1
= / Z fTL Z (h,uzlv/\DlPV)\Dn_l_lQ + hqulPVlll:ln_l_lQ
M 1=0

n=1
1
+ h,, O'POQ — 5SW(thP, On—1-1Q)

+ (Ruy — Kpu)(P'ON o1 (O0"171Q)) + Q'O (02(0" 7' P)))
+oo n—1 [—1

3 [ XS Y (SO @ Q). )

n=1 =1 m=0

+ S (O (0o P)), T1Q) Y g =g d'a (42)

Proof. Note that

00 n—1
0 = D Ja D 08 (O'P(R), 0" 7Q(R) ) - (43)
n=1 =0
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Moreover,

/ 88, (A, B)dgh\/—g d'z = / (S, (64, B) + S, (A, 6B)) 6" /=g d'x
M M

1

+ /M (huw VAAVAB + WV, AV, B + by ADB — 25, (hA, B)) g /=g d*.

Using this formula for each term in €2, yields the result of the Lemma. [J

Theorem 3. The second variation of the action (1) is given by

1 1
2¢ _ _ Z —Z w =g d*
0°S 16nC o <UMV +RW/X K,ul/X + QXN,U + 4@;1,1/> 69 g d xz,
(44)
where
1
Vo = =Shu(R = 20 + PF(O)Q) + 6 Ry (W +1) + 0T}, VoW
1
+ by W = 28,0 (h, W), (45)

- 5(h + PRFO)Q + QFO)(P) + (SR(P"FD)Q + Q"F(O)P)

+ (P'F(O)(QR) + QF(O)(P'IR))), (46)
Xuw = Zl fn Z S (O (PR),0"771Q)

- Z fa Z ( SO(P'M), 0" 1Q) + S, (TH(Q M), D”*Hp))

+ Z I Z (hu VAPV Q + 09,0 PY,OMQ

1
+ hy 0 PEQ — 28, (RO'P,OM11Q)

+ (R — Kuw)(P'T(01(0"711Q)) + Q’Dl(@(D"_I_IP)))), (47)
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and
+o0 n—1 -1
O =Y Fa 3. O (S (@™ (o1 (@1 71Q)), 01 P)
n=1 =1 m=0
+ S (O (0o (@171 P)), 0 1Q) ), (48)
01(B) = VARV \B — 2V ,h*'V, B — 20"V ,V, B, (49)
o9(A) = =V WV A — AOh — 2V, WV, A — 207"V ,V, A. (50)

Proof. In the pervious section we calculated the first variation of the action

(1)
1 ~
6S=—— | Guig™\/—g d*z. 51
R
Moreover the second variation 629 is

1 A R 1 R
nz 2 v af ynz — 4
16:C /M <5GW(59 +GLdg 2gagég Guog > V—gdz.
(52)

528 =

At the beginning note that

/ 0 (G +Agu) 69"/—g d*z
M

1 1 1
= / <5RW — 5 (R=20)hy + S Ryuvh — 2Kwh> 59" /—g d*z. (53)
M

The next term is calculated by using Lemma 7

/ 5 (9w PF(D)Q) 6g"/—g d*x = / huw PF(O)QSg" /—g d*x
M M

“+o00 n—1
S0 [ SO, o Qi

n=1 =0
— /M(RW, — K,,) (P'hF(D)Q + Q' F(O)(Ph))sg" v/—g d*z. (54)
The third term is [}, § (R W) 8g"\/—g d*z and it is equal to
| s Ruwydgy=g ata (55)
_ % /M (O + V¥ — 29,V,12) Wog /=g d'a
+ /M R, 6Wogh \/—g d*x (56)
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The last integral of the above formula is obtained by Lemma 8. Simi-
larly, we obtain

/ § (KuW)dgh'y/—g da = / SWK 69" /—g d*x
M M
1
— / <6F2,,V,\W + Py OW = Sy (b, W)> Sgh/—g d'z (57)

At the end the last term [, 0€,,09""\/—g d*z is calculated in Lemma
10.
O

5. Perturbations
5.1. Background

In this section we look for FRW metric with & = 0 which can be written
as
ds® = —dt* + a(t)*(dz? + dy? + d2?) (58)

Some relevant background quantities are

5710,
a2

R=12H>+6H, I, = Hg;j, Ty = Hs:, 0= -0} —3HO, + (59)

where the indexes i, j range as 1,2,3. On the background all quantities are
space homogeneous as the metric suggests.

For perturbations we employ the canonical ADM (1 + 3) decomposition
and introduce the conformal time 7 such that

adr =dt
Then the general FRW metric (58) transforms
ds® = a(7)?(—dr? + dz? + dy? + d2?). (60)

5.2. Perturbations

The metric perturbations (see [1]) can be categorized in three types: scalar,
vector and tensor perturbations. The component hgy is invariant under
spatial rotations and translations and therefore

h(]() = 2a(7)2¢. (61)

The components hg; are the sum of a spatial gradient of a function B and
divergence free vector 5.

ho; = a(T)Q((?,-B -+ Sz) (62)
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Similarly, components h;;, which transform as a tensor under 3— rotations
are written as

hij = a(T)? (240 + 23%157 + 0iF; + 0 F; + ¢ij), (63)

where 1 and E are scalar functions, F; is a vector with zero divergence and
3— tensor satisfies A ‘

Note that three are four scalar functions, two vectors with two inde-
pendent components each and tensor s;; has two independent components.
Therefore, as expected we have total of ten functions.

The scalar perturbations are defined by scalar functions ¢, ¥, B, E' and
perturbed metric around FFRW b background is

ds® = a(1)? [—(1 — 2¢)dr? + 9;Bdrda’ + ((1 + 2¢)8;; + 20;0;E)da’da’] ,
(65)
The vector perturbations are defined by vectors S; and F;.

ds* = a(1)? [~dr? + S;Bdrdx' + (8;5 + O;F; + 0;F;)dx'dx?],  (66)

Tensor perturbations are defined by ¢;; and describe gravity waves, and
have no analog in Newtonian theory.

ds® = a(r1)? [—dT2 + (65 + soij)dwidl’j] ) (67)

Each of the types of perturbations can be studied separately. In this form
of perturbations we have

()2 2¢ OB+ 5
hy = a(T) ( 0B+ S 2¢yld +2Hess E + 0;F; + 0;F; + ij ) > (68)
h==2¢+ 6y +2AFE, (69)

2 a” a ,
R = ?(6;q§ + A(¢— 20) + BgA(B + E')

/
+35(¢/ +30) + OB + E) + 30", (70)
Moreover, let A* = V,h*’, then
a 1 a 2
A° =6—5(0+¢)+ 5AB+23AE+ ﬁqb', (71)

i a i 2 1 i i
Al = 45(01-3 +5") + ;(‘W + AOE) + ?(&-B’ + 8"+ AFY). (72)
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Let r,, = R, then
1
roo = == (d/(B(B + E) +3(¢/ +0) + a(B(6 + B + B') +3)),
1 /
rio =~ ((a + aa”)9;B + 2aa Z(b) — 20,9/, (74)
1
Tii = —2( a? + aa") (¢ + 1 + OLE) + ad' (A(B + E)
+204(B + ) + ¢/ +50) + a? (03 (0 + B + B — ) + 4" — A9)),
(75)
1
rij = (28i2jE(a/2 +aa") + 2aa’8i2j(B +E')+ a28i2j(¢> —Y+ B + E”)), i # .
(76)
Out of 4 scalar modes only 2 are gauge invariant. The convenient gauge
invariant variables (Bardeen potentials) are introduced as
/

2= ((B-F), U=u+(B-F) (77)

The prime denotes the differentiation with respect to the conformal time 7
and the dot as before w.r.t. the cosmic time t.

The (1 + 3) structure suggests to represent the perturbation quantities
(which can depend on all 4 coordinates) as

f(r, @) = f(7, K)Y (K, ©) (78)

where & = (z,y, z) and k = |k| comes from the definition of the Y-functions
as spatial Fourier modes

§90;0;Y = —k*Y (79)
Obviously )
Y = }/()e:tikf (80)
The relevant expressions for the d’Alembertian operator are
1,5 _d k2 9 k?

Recall that considering the de Sitter background we do not need the per-
turbed d’Alembertian operator to the linear order in perturbation analysis.
However, all the expression in this subsection are valid for a generic scale
factor a.
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6. Concluding Remarks

In this paper we have considered a nonlocal gravity model without matter
given by the action in the form

1
167G

5= / (R—2A+ P(RFO)Q(R) v=gd'z.  (82)
M

We have derived the equations of motion for this action. We also have
presented the second variation of the previous action.

In many research papers there are equations of motion which are a
special case of our equations. In the case P(R) = Q(R) = R we obtain

1
167G

S = / (R—2A + RF(O)R) /—g d*z.
M

This nonlocal model is elaborated is the series of papers [8, 9, 10, 11, 12,
13, 14, 15].

The action (82) for P(R) = R~! and Q(R) = R was introduced in [16]
as a new approach to nonlocal gravity. This model one can also find in [17].

The case P(R) = RP and Q(R) = R? we analyze in [19, 20].

For the case P(R) = (R + Rp)™ and Q(R) = (R + Rp)™ see [18].

In the last case we have R = const. Studies of this model can be found
in [21, 22, 19].
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