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Abstract

We consider the string theory of a closed and an open string and search for the
transformations of the space-time fields which do not change the physical content
of the theory, i.e. the symmetry transformations. In the open string theory we
start with a modified action which has an additional surface term which enables
the invariance of the complete action to the general coordinate transformations
and the gauge transformations. The string theory is conformally invariant world
sheet field theory. Therefore, the physics is preserved if the conformal field theories
corresponding to the initial and the transformed field configurations are isomor-
phic. We show that the general coordinate transformations are T-dual to the
gauge transformations.

1. Bosonic string actions

The dynamics of the bosonic string, moving in a curved background as-
sociated with the massless bosonic fields [1], a metric field Gµν = Gνµ, a
Kalb-Ramond field Bµν = −Bνµ and a dilaton field Φ is described by the
string sigma model action. The background fields in which the string moves
have to satisfy the space-time equations of motion

Rµν −
1

4
BµρσB

ρσ
ν + 2Dµ∂νΦ = 0,

DρB
ρ
µν − 2∂ρΦB

ρ
µν = 0,

4(∂Φ)2 − 4Dµ∂
µΦ +

1

12
BµνρB

µνρ + 4πκ(D − 26)/3−R = 0, (1)

in order for the conformal invariance of the quantum theory to be preserved.
Here Bµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν is the field strength of the field Bµν ,
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Rµν is a Ricci tensor, and Dµ is a covariant derivative with respect to
the space-time metric. We broadly investigated the string sigma model for
the solution of the space-time equations of motion called a weakly curved
background [2] (of the first and second order which differ by the term in
brackets), given by

Gµν(x) = gµν +
{

3h2
µν(x)

}
,

Bµν(x) = bµν + hµν(x), hµν(x) =
1

3
Bµνρx

ρ. (2)

For the open bosonic string we searched for the solution of the boundary
conditions, for which we obtained the effective theory describing a closed
effective string and investigated the commutativity of the effective string
coordinates. We obtained that noncommutativity exists along the entire
string when the Kalb-Ramond field is coordinate dependent.

For the closed string moving in a weakly curved background we devel-
oped the T-dualization procedure, based on the standard procedure, giving
a prescription how to find theories T-dual to a given theory. The gener-
alization of our procedure was made for the weakly curved background of
the second order, which does not posses the global shift symmetry. Our
procedure enabled T-dualization of an arbitrary space-time coordinate. For
the first order weakly curved background we performed the T-dualization
of the arbitrary set of the initial coordinates [3]. If we choose d coordinates
and mark the T-dualizations performed along them, along the rest of the
coordinates and along all coordinates by

T a = ◦dn=1T
µn , T i = ◦Dn=d+1T

µn , T = ◦Dn=1T
µn , (3)

and analogously mark the T-dualizations in the dual space

Ta = ◦dn=1Tµn , Ti = ◦Dn=d+1Tµn , T̃ = ◦Dn=1Tµn , (4)

then we obtain a set of string sigma models connected by the diagram

S[xµ]
-
S[yµ].�

S[xi, ya]

�
�
�
�
����
�

�
�
��	

@
@
@
@
@@R@

@
@
@

@@I

T a Ta T iTi

T

T̃

In a left vertex is the initial action, the bosonic string action in a con-
formal gauge gαβ = e2F ηαβ,

S[x] = κ

∫
Σ
d2ξ ∂+x

µΠ+µν(x)∂−x
ν , ∂± = ∂τ ± ∂σ, (5)
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with the background field composition

Π±µν(x) = Bµν(x)± 1

2
Gµν(x).

The totally T-dualized theory [4], in the right vertex of the T-duality
diagram is

?S[y] =
κ2

2

∫
d2ξ ∂+yµΘµν

− [∆V (0)(y)]∂−yν , (6)

with the background

Θµν
± [∆V ] = −2

κ
(G−1

E Π±G
−1)µν = θµν [∆V ]∓ 1

κ
(G−1

E )µν [∆V ], (7)

which is the inverse of the initial background field composition

Θµν
± Π∓νρ =

1

2κ
δµρ , (8)

and its argument is equal to

∆V (0)µ(y) = −κθµν0 ∆y(0)
ν + (g−1)µν∆ỹ(0)

ν , (9)

where the tilde coordinates represent the flat space-time T-duals of the
corresponding T-dual coordinates.

The central action is a partially T-dualized action, obtained applying
the T-dualization procedure to coordinates xa, given by

S[xi, ya] = κ

∫
d2ξ

[
∂+x

iΠ+ij(x
i,∆V a(xi, ya))∂−x

j

−κ ∂+x
iΠ+ia(x

i,∆V a(xi, ya))Θ̃
ab
− (xi,∆V a(xi, ya))∂−yb

+κ ∂+yaΘ̃
ab
− (xi,∆V a(xi, ya))Π+bi(x

i,∆V a(xi, ya))∂−x
i

+
κ

2
∂+yaΘ̃

ab
− (xi,∆V a(xi, ya))∂−yb

]
. (10)

The new background field compositions are defined in terms of the initial
field composition restricted to corresponding subspaces and their inverses
and the inverses of the totally T-dualized field compositions restricted to
corresponding subspaces

Θ̃ab
±Π∓bc = Π∓cbΘ̃

ba
± =

1

2κ
δac , (11)

and

Π±ijΘ
jk
∓ = Θkj

∓Π±ji =
1

2κ
δki . (12)
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The argument of the background fields is defined by

∆V (0)a(xi, ya) = −κ
[
Θ̃ab

0+Π0−bi + Θ̃ab
0−Π0+bi

]
∆x(0)i

−κ
[
Θ̃ab

0+Π0−bi − Θ̃ab
0−Π0+bi

]
∆x̃(0)i

−κ
2

[
Θ̃ab

0+ + Θ̃ab
0−

]
∆y

(0)
b −

κ

2

[
Θ̃ab

0+ − Θ̃ab
0−

]
∆ỹ

(0)
b ,

where the tilde coordinates represent the flat space-time T-duals of the
appropriate initial or T-dual coordinate. Despite the fact the T-dualization
procedure was applied to xa, there appear the T-duals of the undualized
directions.

If the same procedure is applied to the effective theory of the open
bosonic string, one can investigate the open string T-duality [5]. There are
four relevant theories in this context. The initial open string theory

S = κ

∫
Σ
d2ξ ∂+x

µΠ+µν(x)∂−x
ν , (13)

its effective closed string theory, obtained for the solution of the boundary
conditions

Seff = κ

∫
Σ?
d2ξ ∂+q

µ Πeff
+µν(q, 2bq̃) ∂−q

ν , (14)

the T-dual of the effective theory

?Seff =
κ2

2

∫
Σ?
d2ξ ∂+%µ(Θeff

− )µν(g−1
E %̃, 2bg−1

E %)∂−%ν , (15)

and the open string theory having its effective theory equal to this T-dual
theory

S̃ = κ

∫
Σ
d2ξ ∂+yµΠ̃µν

+ (y)∂−yν .

The effective theory background Πeff
±µν is composed of the effective met-

ric Geffµν (q) = GEµν(q) = Gµν − 4Bµρ(q)(G
−1)ρσBσν(q) and the effective

Kalb-Ramond field Beff
µν (2bq̃) = −κ

2 [g∆θ(2bq̃)g]µν , where ∆θ is an infinites-
imal part of the noncommutativity parameter for the initial coordinates.

Its T-dual background (Θeff
∓ )µν is just its inverse. They are both defined

in the doubled spaces, given in terms of the appropriate coordinates and
their doubles. The relation between these background fields resembles the
relation of the closed string initial field composition and its T-dual. How-
ever, in that case T-dualization transformed a geometrical space into the
double space. In the open string T-duality, this change is not present.
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The T-dual space remains the geometrical space as the initial space and
the T-dual background fields keep the same form as the initial open string
background. In the open string case, the important role in the relation
between the T-dual backgrounds plays a matrix C, which is introduced
to define the connection between the variables of the open string theory
T-dual and the effective theory T-dual.

2. The symmetries

So, we found a number of physically equivalent string sigma models. Enough
to rise again the old question of what is the symmetry transformation of
fields. In a classical theory it is the change in fields which does not change
the classical action. If the string theory is defined by the σ-model action,
the space-time fields appear in this world-sheet action as the coupling con-
stants. So, the standard technique for obtaining the symmetries is not
applicable for finding the symmetry transformation of these fields. One
should instead consider the conformal field theories corresponding to dif-
ferent field configurations [7]. In order for the transformation of field to be
a symmetry (which is in fact the symmetry of the space-time action) the
change in fields should correspond to change in energy-momentum tensors
of two isomorphic conformal field theories.

Let us therefore consider the energy-momentum tensor

T± = ∓ 1

4κ
(G−1)µνj±µj±ν , (16)

given in terms of currents j±µ = πµ + 2κΠ±µν(x)x′ν . The hamiltonian
corresponding to the initial string sigma model lagrangian is

HC = T− − T+. (17)

The space-time equations of motion for the background fields (1), come
from the condition that the energy-momentum tensor on a quantum level
should satisfy the Virasoro algebras[

T̂±(ϕ(σ)), T̂±(ϕ(σ̄))
]

= ih̄
[
T̂±(ϕ(σ)) + T̂±(ϕ(σ̄))

]
δ′(σ − σ̄),[

T̂±(ϕ(σ)), T̂∓(ϕ(σ̄))
]

= 0. (18)

It is known that the similarity transformation T̂± → e−iΓ̂T̂±e
iΓ̂, which

causes the transformation of energy-momentum tensor

δT̂±(ϕ) = −i
[
Γ̂, T̂ (ϕ)

]
, (19)

preserves the Virasoro algebra.
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Let us consider the classical theory and suppose the coordinates and
momenta satisfy the standard Poisson brackets

{xµ(σ), πν(σ̄)} = δµν δ(σ − σ̄), (20)

consequently the Poisson brackets of currents are

{j±µ(σ), j±ν(σ̄)} = ±2κΓ∓µ,νρ x
′ρ(σ)δ(σ − σ̄)± 2κGµν(x(σ))δ′(σ − σ̄),

{j±µ(σ), j∓ν(σ̄)} = ±2κΓ∓ρ,µν x
′ρ(σ)δ(σ − σ̄), (21)

where the generalized connection is given in terms of the Christoffel symbol
Γµ,νρ = 1

2(∂νGρµ + ∂ρGµν − ∂µGνρ) and the field strength of the field Bµν ,
Bµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν by

Γ±µ,νρ = Γµ,νρ ±Bµνρ. (22)

One can further calculate the Poisson brackets between the energy-
momentum tensor and currents

{T±(σ), j±µ(σ̄)} = ± 1

2κ
Γ∓ρ,µνj

ν
∓j

ρ
±δ(σ − σ̄)− j±µ(σ)δ′(σ − σ̄),

{T±(σ), j∓µ(σ̄)} = ± 1

2κ
Γ∓ρ,νµj

ν
±j

ρ
∓δ(σ − σ̄), (23)

to finally obtain that T± satisfy the Virasoro algebra

{T±(σ), T±(σ̄)} = −(T±(σ) + T±(σ̄))δ′(σ − σ̄),

{T±(σ), T∓(σ̄)} = 0. (24)

The classical analogue of transformation (19) is just

δT±(ϕ) =
{

Γ, T (ϕ)
}
. (25)

Let us demonstrate that the known symmetry of the string theory, a
gauge transformation of the Kalb-Ramond field

δΛBµν = ∂µΛν − ∂νΛµ,

δΛGµν = 0, (26)

given in terms of the vector gauge parameters Λµ, causes the transformation
of the energy-momentum tensor which can be expressed in terms of the
generator of the symmetry Γ as in (25). The change in Gµν and Bµν causes
the following transformation of T±

δT± =
1

2κ

(1

κ
δΛBµν ±

1

2
δΛGµν

)
jµ±j

ν
∓. (27)
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We consider a following expression

ΓΛ = 2

∫ π

−π
dσΛµx

′µ =
1

κ

∫ π

−π
dσΛµ(jµ+ − j

µ
−), (28)

and calculate its bracket with the energy-momentum tensor

{ΓΛ, T±(σ)} =
1

2κ2
(∂µΛν − ∂νΛµ)jµ±j

ν
∓. (29)

Comparing (29) and (27), keeping in mind (26), we conclude that ΓΛ is the
generator of this symmetry.

2.1. The closed string symmetry and generators

Now, let us start the other way around. Let us suppose the background
fields undergo a small change in value

Π±µν → Π±µν + δΠ±µν . (30)

This causes the following change of currents

δj±µ = 2κδΠ±µν(x)x′ν , (31)

and consequently the energy-momentum tensor T± = ∓ 1
4κ(G−1)µνj±µj±ν

changes by

δT± =
1

2κ
δΠ±µνj

µ
±j

ν
∓. (32)

If we demand this change to be equal to the change in the energy momentum
tensor (25), we will obtained the corresponding symmetry transformation
laws and their generators.

We assume the form of the generator of the general transformation (32),
is the same as in (28), and therefore consider the expression G = G+ + G−
with

G± =

∫
dσΛµ±(x(σ))j±µ(σ). (33)

The Poisson brackets between energy-momentum tensor and these quanti-
ties are

{T±(σ),G±(σ̄)} = ± 1

2κ

(
D∓νΛµ±

)
jν∓j±µ,

{T±(σ),G∓(σ̄)} = ± 1

2κ

(
D±νΛµ∓

)
jν±j∓µ, (34)

where the covariant derivatives are given by D±µΛν = ∂µΛν + Γν±ρµΛρ =
DµΛν ± Bν

ρµΛρ. One demands the energy-momentum tensor transforms
only by a similarity transformation, and therefore the change (32) is in fact

δT± = {G, T±} =
1

2κ
δΠ±µνj

µ
±j

ν
∓.
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This law determines the closed string symmetry transformations, al-
lowed by a similarity transformation. Separating the parameters in the
generators (33) into Λ±µ = ξµ ±Λµ, one obtains that the symmetry trans-
formation of fields are

δGµν = −2(Dµξν +Dνξµ),

δBµν = DµΛν −DνΛµ − 2B ρ
µν ξρ. (35)

The generator G of these transformations can be expressed as

G =

∫
dσ
[
2ξµπµ + 2κΛ̃µx

′µ
]
. (36)

with
Λ̃ν = 2ξµBµν + ΛµGµν = Λν − 2Bνµξ

µ. (37)

The form of the generator makes it T-dual invariant, which will be discussed
later.

3. The open string and its symmetries

From (35) and (37), we can conclude that the closed string is invariant
under the general coordinate transformations

δξGµν = −2(Dµξν +Dνξµ),

δξBµν = −2ξρBρµν + 2(∂µbν − ∂νbµ), bµ = Bµνξ
ν , (38)

with Dµξν = ∂µξν − Γρµνξρ, and the local gauge transformations

δΛGµν = 0,

δΛBµν = ∂µΛν − ∂νΛµ, (39)

where we omit tilde in lambda (Λ̃µ → Λµ). These transformations are T-
dual to each other, as can be seen comparing their generators. The action
is invariant under these transformations in the closed string case, but is not
invariant in the open string case. In paper [6], the open string action was
proposed, which is invariant to the above transformations because of the
additional surface term which is added to the standard action.

For the open string, beside the equations of motion the minimal action
principle gives the boundary conditions on the string end-points

γµ0 δx
µ
∣∣∣
σ=0,π

= 0,

γµ0 = x′µ − 2(G−1B)µν ẋ
ν . (40)

For each of the coordinates one can fulfill these conditions by choosing
either the Neumann or the Dirichlet boundary condition. Let us mark the
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coordinates with the Neumann condition by xa, a = 0, 1, · · · , p and the
coordinates with the Dirichlet condition by xi, i = p+ 1, · · · , D − 1.

The additional part of the open string action introduced in [6] is given
in terms of the boundary conditions and it reads

S∂Σ = 2

∫
dτ
[
κAµ(x)ẋµ − Āµ(x)(G−1)µνγ(0)

ν

]∣∣∣σ=π

σ=0
. (41)

This term makes the open string theory invariant, taken that the introduced
vector fields Aµ and Āµ transform as

δΛAµ = −Λµ,

δξĀµ = −ξµ. (42)

When the choice how to satisfy the boundary conditions is made, the surface
term (41) reduces to

S∂Σ = 2

∫
dτ
[
κANa (x)ẋa −ADi (x)(G−1)ijγ

(0)
j

]∣∣∣σ=π

σ=0
, (43)

where ANa and ADi are (p + 1)- and (D − p − 1)-dimensional vector gauge
fields, first living on the Dp-brane and the second orthogonal to Dp-brane.

It is well known that the Kalb-Ramond field term of the action∫
d2ξεαβBµν(x)∂αx

µ∂βx
ν

can be regarded as an analogue of the coupling of the Maxwell field∫
dτAµẋ

µ.

So, for the directions satisfying the Neumann boundary condition, the ac-
tion on the boundary equals

S∂Σ = 2κ

∫
dτANa (x)ẋa

∣∣∣σ=π

σ=0
, (44)

and it can be rewritten as

S = κ

∫
d2ξF (a)

ab ε
αβ∂αx

a∂βx
b, (45)

with
F (a)
ab = ∂aA

N
b (x)− ∂bANa (x). (46)

The complete surface term can be written in terms of the field strengths
as

S∂Σ = κ

∫
d2ξ

(
F (a)
µν ε

αβ +
1

2
F (s)
µν η

αβ
)
∂αx

µ∂βx
ν , (47)
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with

F (a)
µν = ∂µA0ν(x)− ∂νA0µ(x),

F (s)
µν = 2(∂µA1ν(x) + ∂νA1µ(x)), (48)

where
A0a = ANa , A0i = 2Bij(G

−1)jkADk , (49)

and
A1a = 0, A1i = −ADi . (50)

Comparing the boundary actions (45) and (47) with the action (5), we
conclude that the addition of the surface term has changed the background
fields by

Gµν → Gµν + F (s)
µν = Gµν

Bµν → Bµν + F (a)
µν = Bµν . (51)

3.1. The generators

Now that we have rewritten the open string action in the same form as
the standard closed string action, we can determine the open string sym-
metry transformations and their generators in analogy to the closed string
symmetry transformations and their generators. For the open string with
Neumann boundary conditions the symmetry transformations are just (in-
stead of (35))

δGµν = −2Dµξν − 2Dνξµ,

δBµν = DµΛν −DνΛµ + 2B ρ
µ νξρ, (52)

where B ρ
µ ν is a field strength of the changed Kalb-Ramond field Bµν →

Bµν = Bµν + F (a)
µν , in comparison to the closed string case. However, the

field strength of the additional part is zero and therefore Bµνρ = Bµνρ. The
generator of these transformations is

G =

∫
dσ
[
2ξµπµ + 2κ(2ξµBµν + ΛµGµν)x′ν

]
, (53)

with
πµ = κGµν(x)ẋν − 2κBµν(x)x′ν . (54)

The open string symmetry transformations, for all the remaining choices
for the boundary conditions are

δGµν = −2(Dµξν + Dνξµ),

δBµν = DµΛν −DνΛµ − 2B ρ
µν ξρ, (55)
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with the open string covariant derivative equal to

DµΛν = ∂µΛν + ΓνρµΛρ,

where Γνρµ is a Christoffel symbol for the changed metric Gµν = Gµν +F (s)
µν .

Again the field strength of the changed Kalb-Ramond field Bµν = Bµν+F (a)
µν

is just Bµνρ = Bµνρ. The generator of the transformation is

G =

∫
dσ
[
2ξµπµ + 2κΛ̃νx

′ν
]
, (56)

with
πµ = κGµν(x)ẋν − 2κBµν(x)x′ν , (57)

and
Λ̃ν = 2ξµBµν + ΛµGµν = Λν − 2Bνµξµ. (58)

Using (48), we obtain the connection

Γµ,νρ = Γµ,νρ − 2∂ν∂ρA
D
µ . (59)

So, if we chose ADµ linear in coordinate, the connection will remain the
same as in the closed string case. Therefore, for such a choice, the symmetry
transformations remain the same in all the cases considered. The generators
however differ.

4. Conclusion

We considered the string theory of a closed and an open string, described
by a standard string sigma model and the modified open string action
introduced in [6]. We searched for the symmetry transformations of the
space-time fields in which the strings move. We found these symmetries
comparing the change in the energy-momentum tensor caused by a similar-
ity transformation and the transformation of fields. These transformations
are the symmetries because the conformal field theories corresponding to
the initial and the transformed field configurations are isomorphic.

We obtained the explicit form of symmetry transformations for the
closed string and the open string with the arbitrary choice of boundary
conditions. It turned out that for the appropriate choice of the form of the
vector fields on the boundary the symmetry transformations are the same
in all cases considered. The generators of these transformations are of the
following form

G = 2

∫
dσ
[
ξµπµ + Λ̃µκx

′µ
]

= Gξ + GΛ. (60)

Let us at this point include the T-duality into the consideration, namely the
complete T-dualization, i.e. the T-dualization along all initial coordinates.
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The T-dualization procedure gives the T-duality coordinate transformation
laws, which are connecting the coordinates of the initial string sigma model
S[x], defined in (5) and the totally T-dualized theory ?S[y], defined in (6).
The coordinate transformation laws are obtained comparing the solutions
of the equations of motion for the gauge fields of the auxiliary actions. They
read

∂±x
µ ∼= −κΘµν

± [∆V (0)]∂±yν ∓ 2κΘµν
0±β

∓
ν [V (0)].

In the canonical form, in the zeroth order they reduce to

πµ ∼= κx′µ.

It is obvious, that in this case the components of the symmetry generator
(60) are T-dual to each other

Gξ ∼= GΛ.

Therefore, the generator of symmetries is T-dual to itself.
The broader presentation of these investigations will be presented else-

where, as well as the consideration of the connection between generators in
the more complicated backgrounds.
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