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Abstract

The paper reviews few general methods which are used for investigating the
integrable models and for finding their analytic solutions.Two specific methods,
the symmetry method and the auxiliary equation method, will be especially con-
sidered. They will be applied to the Ricci flow model expressed as a nonlinear
PDE in 2 + 1 dimensions. Both methods have a similar philosophy: replacing the
model by an ODE obtained through similarity reduction (in the approach based
on symmetry), respectively by passing to the wave variable. The focus will be on
the auxiliary equation method and a new approach, called power law method will
be propsed.

1. Introduction

An important question in the study of the nonlinear differential equations
is related to their integrability, that is establishing if solutions of the consid-
ered equations exist. There is not a general theory/procedure allowing to
completely solve nonlinear ODEs or PDEs. Sometimes it is quite enough
to decide if the system is integrable or not. There are many methods
which have been proposed for deciding on the integrability of the nonlinear
equations such as: the inverse scattering method [1, 2], the Hirota bilin-
ear transformation [3], the generalized Riccati equation method [4], the(
G′

G

)
-expansion method [5, 6], the Lie symmetry method [7, 8, 9, 10, 11],

the soliton ansatz method [12, 13], the generalized conditional symmetry
approach [14, 15] and other techniques. In this paper we will focus on
two such methods: the symmetry approach and the expansion method ap-
plied to a specific nonlinear PDE, namely the 2D Ricci flow equation [16],
[17]. It has been used by mathematicians in order to understand special
geometries which admit 3-manifolds. These mathematical developments
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have been useful in physics too. Many papers dealing with physical ap-
plications of the Ricci flow, among which [18], [19], [20], [21], have been
published. In [22] the Lie point symmetries are calculated in terms of two
arbitrary functions. Conservation laws for the 2D Ricci flow model via the
direct construction method [23], have been established in [24] and some
new invariant solutions have been derived.

The paper is organized as follow: after this introductory section, in
Section 2 the symmetry method will be presented. Section 3 will review
the auxiliary equation method, while in Section 4 the 2D Ricci flow model
will be analyzed. As a novelty, a most general polynomial expansion which
includes almost all the approaches usually applied in literature will be pro-
posed.

2. Symmetries and their applications in nonlinear dynamics

Many natural phenomena are described by a system of nonlinear partial dif-
ferential equations (PDEs) which is often difficult to be solved analytically,
since there is no general theory for completely solving nonlinear pdes. One
of the most useful techniques for finding exact solutions for the dynamical
systems described by nonlinear pdes is the symmetry method. On the one
hand, we can consider the symmetry reduction of differential equations and
thus obtain classes of exact solutions. On the other hand, by definition, a
symmetry transforms solutions into solutions, and thus symmetries can be
used to generate new solutions from known ones. The classical Lie method
[25], the nonclassical method [26], the direct method [27], the differential
constraint approach [28], the new nonclassical algorithm, the generalized
symmetry method [29] are important methods for finding special classes of
solutions for nonlinear PDEs.

The Lie symmetry method has been proven to be a powerful tool
for studying a remarkable number of PDEs arising in mathematical physics
[30], [31].

Let us consider a dynamical system described by the n-th order partial
differential equation:

∆ν(x, u(n)[x]) = 0, (1)

where x ≡ {xi, i = 1, p} ⊂ Rp represent independent variables, while

u ≡ {uα, α = 1, q} ⊂ Rq dependent ones. The notation u(n)designates the
set of variables which includes u and the partial derivatives of u up to the
n-th order.

The general infinitesimal symmetry operator has the form:

U =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

φα(x, u)
∂

∂uα
. (2)
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The n-th extension of (2) is given by:

U (n) = U +

q∑
α=1

∑
J

φJα(x, u(n))
∂

∂uαJ
, (3)

where

uαJ =
∂muα

∂xj1∂xj2 ..∂xjm
. (4)

Also, in (4) the second summation refers to all the multi-indices J =
(j1, ...jm), with 1 ≤ jm ≤ p, 1 ≤ m ≤ n .The coefficient functions φJα are
given by the following formula:

φJα(xi, u(n)) = DJ [φα −
p∑
i=1

ξiuαi ] +

p∑
i=1

ξiuαJ,i, α = 1, q, (5)

in which

uαi =
∂uα

∂xi
, i = 1, p, (6)

uαJ,i =
∂uαJ
∂xi

=
∂m+1uα

∂xi∂xj1∂xj2 ..∂xjm
, (7)

DJ = Dj1Dj2 ...Djm =
d m

dxj1dxj2 ..dxjm
. (8)

The Lie symmetries represent the set of all the infinitesimal transforma-
tions which keep invariant the differential system. The invariance condition
is:

U (n)[∆ν ] p∆ν=0= 0. (9)

The characteristic equations associated to the general symmetry gener-
ator (2) have the form:

dx1

ξ1
= ... =

dxp

ξp
=
du1

φ1
= ... =

duq

φq
. (10)

By integrating the characteristic system of ordinary differential
equations (10), the invariants Ir, r = 1, (p+ q − 1) of the analyzed system
can be found. They are identified the constants of integration. Following
this way, the set of similarity variables is found in terms through which the
original evolutionary equation with p independent variables and q depen-
dent ones can be reduced to a set of differential equations with (p+ q − 1)
variables. These are the similarity reduced equations which generate the
similarity solution of the analyzed model.

The nonclassical symmetry method (NMS) may be used to derive
nonclassical symmetries which are the one-parameter groups of transfor-
mations acting on the space of the independent and dependent variables of
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the systems that leave only a subset of the set of all analytical solutions
invariant.

The basic idea of the nonclassical method is to augment (1) with the
invariance surface condition:

Ωα ≡ φα(x, u)−
p∑
i=1

ξi(x, u)
∂uα

∂xi
= 0, α = 1, q. (11)

The q−tuple Q = (Q1, Q2, ...Qq) is known as the characteristic of the sym-
metry operator (2).

The infinitesimal invariance of the equation (1) and the invariant surface
condition (11) can be written:

U (n)(∆ν)∆ν=0,Ωα=0 = 0, U (n)(Ωα)∆ν=0,Ωα=0 = 0. (12)

By extending the conditions (12), we see that the number of determining
equations for the infinitesimals ξi(x, u), φα(x, u) appearing in the nonclas-
sical method is smaller than the one for the classical method. The main
difficulty of this approach is that the determining equations are no longer
linear. On the other hand, the NSM may produce more solutions than the
CSM, since any classical symmetry is a nonclassical one, but conversely
this does not apply [32].

For ξp 6= 0 in [33] is proposed a new algorithm for finding nonclassical
symmetries. This algorithm is based on the following remark: since U is
a symmetry operator so is αU , for any function α = α(x, u). Thereby, if
ξp 6= 0 we could multiplicate U by (1/ξp) and write down the invariant
surface condition under the equivalent expression:

∂u

∂xp
= η(x, u)−

p−1∑
i=1

ξi(x, u)
∂u

∂xi
. (13)

By substituting (13) and its derivatives with respect to x in (1) a new
partial differential equation results:

∆′ ≡ ∆′(Fβ(x, u), u[l], ..., u[n]), (14)

for the unknown function u = u(x1, ..., xp−1;xp) of x1, ..., xp−1 (here xp is
considered as a parameter); the functions Fβ(x, u) are the coefficients of

u[l], where u[l] denotes the whole set of partial derivatives of u with respect
to x = (x1, ..., xp−1) up to order N.

The next step consists in applying the classical Lie method to (14).
Thus, let us consider a Lie group of point transformations associated with
the following infinitesimal symmetry generator:

V =

p∑
i=1

si(x, u)
∂

∂xi
+ r(x, u)

∂

∂u
. (15)
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By imposing the invariance of (14) under the action of operator (15), the
determining differential equations for the infinitesimals si(x, u), r(x, u).will
be obtained. By resetting the coefficient functions sp = 1, si = ξi, i =
1, ..., p − 2, r = η and substituting the functions Fβ into the determining
equations, we could find determining equations for nonclassical symmetries
of the original dynamical system described by PDE of type (1).

3. The expansion method

The second method we are focusing on is the so called ”expansion method”.
Its idea consists in reducing the governing PDE to an ODE. To do that,
the first step to be followed is the introduction of the wave variable ξ =
ξ(t, x1, ..., xp). The second step is to look for solutions of the ODE in terms
of the solutions of another ODE, called ”auxiliary equation”, with already
known solutions.

Let us consider a governing equation of the form:

F (u, ut, ux, uxx, utt, ...) = 0 (16)

We define the wave coordinate:

ξ = x− V t (17)

By that, the equation (16) becomes the following ODE:

Q(u, u′, u′′, u′′′, ...) = 0 (18)

where the derivatives are considered in respect with ξ.
There are many versions related to the expansion method, depending

on the auxiliary equation which is chosen. Two of the most used versions
are:

i)The tanh method - solutions of (18) in terms of tanh(ξ), cosh(ξ), sinh(ξ),
etc. which are solutions φ(ξ) of equations, as Riccati, so:

u(ξ) =
N∑
i=0

aiϕ
i (19)

ii) The G′/G method, where G(ξ) solution of an auxiliary equation. In
this case:

u(ξ) =

N∑
i=0

ai

(
G′

G

)i
(20)

The approach we are proposing is an unifying one. More precisely, the
solution of the master equation will be asked to be a polynomial expansion
in terms of the solutions G(ξ) of an ”auxiliary equation”:

u(ξ) =
N∑
i=0

Pi(G)(G′)i (21)



140 R. Constantinescu, A. Florian, C. Ionescu and A. M. Pauna

where Pi(G) are polynomials in G to be determined. Computing the deriva-
tives of u(ξ) higher order derivatives G′, G′′, G′′′, ... could appear. So we
might look to a more general solution depending on higher derivatives of
G(ξ):

u(ξ) = P0(G) + P1(G)G′ + P2(G,G′)G′′ + ... (22)

Although, the higher derivatives G′′.G′′′,... can be expressed in terms of
G,G′ by using an adequate auxiliary equation. The form and the order of
the auxiliary equations are important. The most used auxiliary equations
which appear in the papers published in the last years are:

- Riccati Equation (first order nonlinear equation):

G′ = α+ βG2 (23)

- Second order linear ODE:

G′′ +AG′ +BG = 0 (24)

-Second order nonlinear ODE:

AGG′′ −B(G′)2 − CGG′ − EG2 = 0 (25)

-Third order nonlinear ODE:

AG2G′′′ −B(G′)3 − CG(G′)2 −DG2G′ − FG3 = 0 (26)

The next step after choosing the auxiliary equation is to determine the limit
N of the expansion (21) by a standard ”balancing” procedure: replace (21)
in (18) and take into account the higheast nonlinearity and the term with
the maximal order of derivation.

In our case a new requirement is imposed: polynomial expantions for the
functions P0(G), P1(G), P2(G),... To have a true balance and compatibility,
we have to consider expansions of the form:

P2(G) =
0∑

i=−2

aiG
i (27)

P1(G) =

0∑
j=−1

bjG
j (28)

P0(G) = c0 (29)

From the algebraic system generated by these choices, we can determine
the coefficients ai, bi and ci. After that, we can write down the form of the
solutions u(ξ). These solutions have to be discussed for various possible
values of the coefficients A,B,C,...appearing in the master equation.
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4. Application to the 2D Ricci flow equation

The 2D Ricci flow equation in has the form:

ut =
uxy
u
− uxuy

u2
(30)

It was analyzed through symmetry method in [34].Here we will focus on
the auxiliary equation method and its use in the direct finding of soliton
type solutions. We will apply the wave transformation which transforms
the equation (30) in:

U ′U2 +
αβ

λ
(UU ′′ − U ′2) = 0 (31)

We will solve equation (31) by four different methods, in order to compare
the solutions themselves and the efficiency of the methods. A general ap-
proach, unifying methods as tanh or G′/G, will be now proposed. It will
be denominated as the power law method.

4.1. Double integration method

The equation (31) can be solved directly by double integration and the
form of the solution is:

U =
eA

−1 + λc1eA
(32)

A(ξ) =
ξ + c2

c1αβ

The direct integration leads to singular solution which are not of Phys-
ical interest.

4.2. Solution of tanh type

The simplest way of finding soliton solutions for (26) is to use Riccati as
auxiliary equation and to look for solutions of (31) . More precisely, we will
consider:

U(ξ) =

N∑
i=0

aiG
i (33)

The Riccati equation has the form:

G′ = k +G2 (34)

with k a real constant.
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Figure 1: Tanh method y = 0

Considering integrating constant as zero,

ξ = {
1√
k

tan−1( G√
k

)

− 1√
k

cot−1( G√
k

)
, k > 0

ξ = − 1

G
, k = 0 (35)

ξ = {
− 1√
−k tanh−1( G√

−k )

− 1√
−k coth−1( G√

−k )
, k < 0

The balancing procedure leads to the maximal value N = 1, that is the
solution we are looking for will have the form:

U(ξ) = a0 + a1G (36)

U(ξ) =
αβ

λ

(√
−k −

√
−k tanh

√
−kξ

)
(37)

4.3. Solution of G′/G type

We solve now the equation by using the G′/G method. It imposes to look
for solutions of the form:

U(ξ) =
N∑
i=0

di

(
G′

G

)i
(38)
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Figure 2: Polynomial expansion for α = 1, β = 2, λ = 1, x = 0

We will consider that di are constant coefficients, while this time,G(ξ) is a
solution of the auxiliary equation of the form:

G′′ +mG′ + nG = 0 (39)

Again, the balancing procedure leads to the same limit N = 1.
By introducing (38) in (39) we get a polynomial equation in G′ con-

taining monomyals until G′7. Equating with zero the coefficients for all
this monomials we get a system of 8 ODE with the unknown quantities
a0(G), a1(G) which satisfy the following equations:

a0 =
αβm

a1
+ Ce

−a1λ
αβ

G
(40)

a′1a1 +
αβ

λ
(a
′′
1a1 − a′1) = 0 (41)

4.4. Power law expansion

Another quite similar approach for solving the ”master” equation (31) con-
sists in looking for polynomial solutions of the type:

U ′ = V (U) (42)

Then:

αβUV (U)
dV

dU
+ λU2V (U)− αβV (U)2 = 0. (43)
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Figure 3: Power law method for α = 1, β = 1, λ = 1, y = 0, k = 1/2

The solution of (43) is

V (U) = −λU(2U + k)

2αβ
, (44)

where k is the integration constant. From the above relation we can find
that

U =
k

sinh( λkζ2αβ ) + cosh( λkζ2αβ )− 2
(45)

The final solution is quite similar with the ones got through previous
approaches and it is presented in the figure below.

5. Conclusions

We proposed a general algorithm for finding solutions of nonlinear PDEs by
using polynomial expansions in terms of auxiliary equations solutions. It in-
cludes all the methods proposed in literature, known as tanh, cosh, sinh, G′/G,
etc. The main idea is quite similar with what symmetry method offers: to
reduce a complicated equation to a simpler one, to solve this last equa-
tion, and to transfer its solutions to the master (complicated) equation.
We pointed out the importance of three main factors: - the choice of the
auxiliary equation; - the choice of the form of solution; - the balancing
procedure. For the specific model we tackled, we get that the polynomials
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from (21) have the form:

P2(G) = a2G
−2 (46)

P1(G) = b1G
−1 (47)

P0(G) = 0 (48)

It appears in a natural way that really the largest class of solutions can
be expressed as (G′/G) expansions. Why this expansion was choosen in
previous approaches was not at all clear. The method we proposed is
purelly analytic and it open the doors for finding other solutions which do
not belong to the class of (G′/G) class.

References

[1] M. J. Ablowitz, P. A. Clarkson, Solitons, (Cambridge University Press, Cambridge,
1990).

[2] V. O. Vakhnenko, E. J. Parkes, A. J. Morrison, A Bäcklund transformation and
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