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Abstract

Exceptional field theory (EFT) gives a geometric underpinning of the U-duality
symmetries of M-theory. In this talk I give an overview of the surprisingly rich
algebraic structures which naturally appear in the context of EFT. This includes
Borcherds superalgebras, Cartan type superalgebras (tensor hierarchy algebras)
and L∞ algebras. This is the written version of a talk based mainly on refs.
[52, 61, 55, 76, 62, 78], presented at ISQS25, Prague, June 2017, at QTS-10/LT-
12, Varna, June 2017, at SQS 2017, Dubna, Aug. 2017, and at M∩Φ9, Belgrade,
Sept. 2017.

Duality symmetries in string theory/M-theory mix gravitational and non-
gravitational fields. Manifestation of such symmetries calls for a generali-
sation of the concept of geometry. It has been proposed that the compact-
ifying space (torus) is enlarged to accommodate momenta (representing
momenta and brane windings) in modules of a duality group. This leads to
double geometry [1, 2, 4, 64, 6, 5, 8, 9, 10, 12, 11, 13, 14, 15, 45, 44, 28, 29, 60,
17, 18, 40, 41, 72, 73] in the context of T-duality, and exceptional geometry
[7, 19, 20, 21, 22, 24, 25, 26, 27, 30, 31, 32, 33, 70, 34, 35, 56, 57, 49, 69, 71]
in the context of U-duality. These classes of models are special cases of ex-
tended geometries, and can be treated in a unified manner [76]. The duality
group is in a certain sense present already in the uncompactified theory. It
becomes “geometrised”.

In the present talk, I will

• Describe the basics of extended geometry, with focus on the gauge
transformations;

• Describe the appearance of Borcherds superalgebras and Cartan-type
superalgebras (tensor hierarchy superalgebras);

• Indicate why L∞ algebras provide a good framework for describing
the gauge symmetries.
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• Point out some questions and directions.

The focus will thus be on algebraic aspects, and less on geometric ones.
Consider compactification from 11 to 11 − n dimensions on Tn. As is

well known, fields and charges fall into modules of En(n).

n En(n) R1

3 SL(3)× SL(2) (3,2)

4 SL(5) 10

5 Spin(5, 5) 16

6 E6(6) 27

7 E7(7) 56

8 E8(8) 248

9 E9(9) fund

Table 1: A list of U-duality groups.

n

1 2 n−4 n−3 n−2 n−1

Figure 1: The module R1.

To be explicit, take n = 7 as an example. The gauge parameters ξM in
56 of E7 decompose as:

ξm λmn λ̃mnpqr ξ̃m,n1...n7 ← ξM

7 + 21 + 21 + 7 = 56
(1)

We recognise the parameters for diffeomorphisms, gauge transformations of
the 3-form and dual 6-form and a parameter for “dual diffeomorphisms”.
The scalar fields are in the coset E7(7)/K(E7(7)) = E7(7)/(SU(8)/Z2). The
dimension of coset is: 133− 63 = 70, and it is parametrised by

gmn Cmnp C̃mnpqrs ← GMN

28 + 35 + 7 = 70
(2)

From the point of view of N = 8 supergravity in D = 4, this is the scalar
field coset. Now it becomes a generalised metric. There are also mixed
fields (generalised graviphotons): 1-forms in R1, etc.
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The situation for T-duality is simpler. Compactification from 10 to 10−
d dimensions gives the (continuous) T-duality group O(d, d). The momenta
are complemented with string windings to form the 2d-dimensional module

Note that the continuous duality group is not to be seen as a global
symmetry. Discrete duality transformations in O(d, d;Z) or En(n)(Z) arise
as symmetries in certain backgrounds, roughly as the mapping class group
SL(n;Z) arises as discrete isometries of a torus. The rôle of the continuous
versions of the duality groups is analogous to that of GL(n) in ordinary
geometry (gravity).

One has to decide how tensors transform. The generic recipe is to mimic
the Lie derivative for ordinary diffeomorphisms:

LUV
m = Un

nV
m − nU

mV n . (3)

The first term is a transport term, and the second one a gl transformation,
with parameter in red.

In the case of U-duality, the role of GL is assumed by En(n) ×R+, and

LUVM = LUV
M + YMN

PQNU
PV Q

= UN
NV

M + ZMN
PQNU

PV Q ,
(4)

where ZMN
PQ = −nPM

adjQ,
N

P +
¯
n.MQ.NP = YMN

PQ − .MP.NQ projects

on the adjoint of En(n)×R, so that the red factor becomes a parameter for
an en ⊕ R transformation.

The transformations form an “algebra” for n ≤ 7:

[LU ,LV ]WM = L[U,V ]W
M , (5)

where the “Courant bracket” is [U, V ]M = 1
2(LUVM − LV UM ), provided

that the derivatives fulfil a “section constraint”.

The section constraint ensures that fields locally depend only on an n-
dimensional subspace of the coordinates, on which a GL(n) subgroup acts.
It reads YMN

PQM . . .N = 0, or

(⊗)|R2
= 0 . (6)

For n ≥ 8 more local transformations, so called “ancillary transformations”
[76] emerge, which are constrained local transformations in g.
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n R1 R2

3 (3,2) (3,1)

4 10 5

5 16 10

6 27 27

7 56 133

8 248 1⊕ 3875

Table 2: A list of R1 and R2 for different En.

n

1 2 n−4 n−3 n−2 n−1

Figure 2: The module R2.

The interpretation of the section condition is that the momenta locally
are chosen so that they may span a linear subspace of cotangent space with
maximal dimension, such that any pair of covectors p, p′ in the subspace
fulfil (p⊗ p′)|R2

= 0.

The corresponding statement for double geometry is ηMN
M ⊗ N = 0,

where η is the O(d, d)-invariant metric. The maximal linear subspace is a
d-dimensional isotropic subspace, and it is determined by a pure spinor Λ.
Once a Λ is chosen, the section condition can be written ΓMΛM = 0. An
analogous linear construction can be performed in the exceptional setting.
The section condition in double geometry derives from the level matching
condition in string theory. Locally, supergravity is recovered. Globally,
non-geometric solutions are also obtained.

There is a universal form [52, 55, 76] of the generalised diffeomorphisms
for any Kac–Moody algebra and choice of coordinate representation. Let
the coordinate representation be R(λ), for λ a fundamental weight dual to
a simple root α (the construction can be made more general). Then

σY = −ηABT
A ⊗ TB + (λ, λ) + σ − 1 , (7)

where η is the Killing metric and σ the permutation operator, σ(a ⊗ b) =
(b⊗ a)σ.

This follows from the existence of a solution to the section constraint
in the form of a linear space:
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• Each momentum must be in the minimal orbit. Equivalently, p⊗ p ∈
R(2λ).

• Products of different momenta may contain R(2λ) and R(2λ− α),
where R(2λ − α) is the highest representation in the antisymmet-
ric product. Expressing these conditions in terms of the quadratic
Casimir gives the form of Y .

I will skip the detailed description of the generalised gravity. It effec-
tively provides the local dynamics of gravity and 3-form, which are encoded
by a vielbein EM

A in the coset (En(n) × R)/K(En(n)).

n En(n) K(En(n))

3 SL(3)× SL(2) SO(3)× SO(2)

4 SL(5) SO(5)

5 Spin(5, 5) (Spin(5)× Spin(5))/Z2

6 E6(6) USp(8)/Z2

7 E7(7) SU(8)/Z2

8 E8(8) Spin(16)/Z2

9 E9(9) K(E9(9))

Table 3: A list of compact subgroups.
The T-duality case is described by a generalised metric in the coset

O(d, d)/(O(d)×O(d)), parametrised by the ordinary metric and B-field.
With some differences from ordinary geometry, one can go through the

construction of connection, torsion, metric compatibility etc., and arrive at
generalised Einstein’s equations encoding the equations of motion for all
fields. (This has been done for n ≤ 8.)

For n ≥ 8, the coset En(n)/K(En(n)) contains higher mixed tensors that
do not carry independent physical degrees of freedom. They are removed by
ancillary transformations that arise in the commutator between generalised
diffeomorphisms [70, 56, 57, 55, 76].

One may introduce (local) supersymmetry. In the case of T-duality,
the superspace is based on the fundamental representation of an orthosym-
plectic supergroup OSp(d, d|2s). The exceptional cases are unexplored, but
will be based on ∞-dimensional superalgebras [50].

The generalised diffeomorphisms do not satisfy a Jacobi identity. On
general grounds, it can be shown that the “Jacobiator”

[[U, V ],W ] + cycl 6= 0 , (8)

but is proportional to ([U, V ],W ) + cycl, where (U, V ) = 1
2(LUV + LV U).
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It is important to show that the Jacobiator in some sense is trivial. It
turns out that L(U,V )W = 0 (for n ≤ 7), and the interpretation is that it
is a gauge transformation with a parameter representing reducibility (for
n ≤ 6). (The limits on n in the statements here are due to non-covariance
of the derivative arising at some point in the tensor hierarchy, see below. I
will not go into details.)

In double geometry, this reducibility is just the scalar reducibility of a
gauge transformation: δB2 = dλ1, with the reducibility δλ1 = dλ′0.

In exceptional geometry, the reducibility turns out to be more com-
plicated, leading to an infinite (but well defined) reducibility, containing
the modules of tensor hierarchies, and providing a natural generalisation of
forms (having connection-free covariant derivatives).

The reducibility continues, and there are ghosts at all levels > 0. The
representations are those of a “tensor hierarchy”, the sequence of represen-
tations Rn of n-form gauge fields in the dimensionally reduces theory.

R1
∂←− R2

∂←− R3
∂←− . . . (9)

Example, n = 5:

16
∂←− 10

∂←− 16
∂←− 45

∂←− 144
∂←− . . . (10)

16− 10 + 16− 45 + 144− . . . = 11 (11)

(suitably regularised), which is the number of degrees of freedom of a pure
spinor.

The representations {Rn}∞n=1 agree with [51]

• The ghosts for a “pure spinor” constraint (a constraint implying an
object lies in the minimal orbit);

• The positive levels of a Borcherds superalgebra B(En).

0 1 2 n−4 n−3 n−2 n−1

n

Figure 3: Dynkin diagram for B(En).

Indeed, the denominator appearing in the denominator formula for
B(En) is identical to the partition function of a “pure spinor” [51].
B(Dn) ≈ osp(n, n|2)
B(An) ≈ sl(n+ 1|1)

. . .
∂←− R−1

∂←− R0
∂←− R1

∂←− R2
∂←− . . . ∂←− R8−n︸ ︷︷ ︸

covariant

∂←− R9−n
∂←− R10−n

∂←− . . .

(12)
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The modules R1, . . . , R8−n behave like forms. The “exterior deriva-
tive” is connection-free (for a torsion-free connection), and there is a wedge
product [32].

The modules show a symmetry: R9−n = Rn. There is another extension
to negative levels that respects this symmetry, and seems more connected
to geometry: tensor hierarchy algebras [61, 62]

In the classification of finite-dimensional superalgebras by Kac, there is
a special class, “Cartan-type superalgebras”. The Cartan-type superalge-
bra W (n), which I prefer to call W (An−1), is asymmetric between positive
and negative levels, and (therefore) not defined through generators corre-
sponding to simple roots and Serre relations.

W (An−1) is the superalgebra of derivations on the superalgebra of (point-
wise) forms in n dimensions.

Any operation ω → Ω∧ ıV ω, where Ω is a form and V a vector, belongs
to W (An−1). A basis is given by

level = 1 ıa

0 ebıa

−1 eb1eb2ıa

−2 eb1eb2eb3ıa

. . . . . .

The level decomposition of W (An−1).
A subalgebra S(An−1) contains traceless tensors. The positive levels

agree with B(An−1) ≈ sl(n|1). Note that the representations of torsion and
torsion Bianchi identity appear at levels −1 and −2.

In spite of the absence of a Cartan involution, there is a way to give a
systematic Chevalley–Serre presentation of the superalgebra, based on the
same Dynkin diagram as the Borcherds superalgebra [62].

Figure 4: Dynkin diagram for B(g) and W (g).

The construction can be extended to W (Dn), and, most interestingly,
W (En) (and the corresponding S(g)). The statements about torsion and
Bianchi identities remain true (but we still lack a good geometric argu-
ment).

Back to the Jacobi identity. Expressed in terms of a fermionic ghost in
R1,

[[c, c], c] 6= 0 . (13)
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How is this remedied? The most general formalism for gauge symmetries
is the Batalin–Vilkovisky formalism, where everything is encoded in the
master equation (S, S) = 0.

If transformations are field-independent, one may consider the ghost
action consistently. An L∞ algebra is a (super)algebraic structure which
provides a perturbative solution to the master equation.

Let C denote all ghosts. Then the master equation states the nilpotency
of a transformation

δC = (S,C) = C + [C,C] + [C,C,C] + [C,C,C,C] + . . . (14)

The identities that need to be fulfilled are:

2C = 0 ,
[C,C] + 2[C,C] = 0 ,
[C,C,C] + 2[[C,C], C] + 3[C,C,C] ,
. . .

(15)

Assuming c = 0, the non-vanishing of [[c, c], c] can be compensated by the
derivative of an element in R2 (representing reducibility). One needs to
introduce a 3-bracket

[c, c, c] ∈ R2 . (16)

Then, there are more identities to check.
For double field theory, a 3-bracket is enough [77].
For exceptional field theory, there are signs, that one will in fact obtain

arbitrarily high brackets [78]. There are also other issues concerning the
non-covariance outside the “form window”. I will not go into detail.

In conclusion, the area has rich connections to various areas of pure
mathematics, some of which are under investigation:

• Group theory and representation theory

• Minimal orbits

• Superalgebras

• Cartan-type superalgebras

• Infinite-dimensional (affine, hyperbolic,...) Lie algebras

• Geometry and generalised geometry

• Automorphic forms

• L∞ algebras

• . . .

There are many open questions:

• Can the formalism be continued to n > 9? The transformations work
for e.g. E10 [76], and there seems to be no reason (other than math-
ematical difficulties) that it stops there. Is there a connection to the
“E10 proposal” [79] with emergent space?
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• Geometry from algebra? What is the precise geometric relation be-
tween the tensor hierarchy algebra and the generalised diffeomor-
phisms?

• Superspace/supergeometry? And some formalism generalising that of
pure spinor superfields, that manifests supersymmetry?

• The section constraint: Can it be lifted, or dynamically generated?

• What can be learnt about the full string theory/M-theory?

• . . . ?

Thank you for your attention.
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