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Abstract

We review the problem of constructing explicit Ricci-flat metrics on non-compact
toric Calabi-Yau manifolds. The case when the manifold is the total space of the
canonical bundle over the del Pezzo surface of rank one is analyzed in detail. We
show that there exists a first-order deformation of the so called ‘orthotoric metric’,
in line with the Calabi-Yau theorem. A deformation of the corresponding conformal
Killing-Yano form does not exist.

1. Introduction

We will be considering Calabi-Yau threefolds M:

• Complex manifolds of complex dimension three: dimCM = 3

• Zero first Chern class: c1(M) = c1(K) = 0
(K is the canonical bundle = bundle of 3-forms Ω ∝ f(z) dz1∧dz2∧dz3),
i.e. there exists a non-vanishing holomorphic 3-form Ω

• Such manifolds are used for supersymmetric compactifications in super-
gravity (R3,1 ×M), and serve as backgrounds for brane constructions
(AdS5 × Y 5)

It is easy to show that compact Calabi-Yau’s do not admit Killing vectors
(apart from trivial cases), therefore explicit metrics are difficult to construct.
For this reason we will be considering non-compact Calabi-Yau’s, which do
have symmetries. In this case the geometry of such manifolds may often be
studied explicitly. These non-compact Calabi-Yau’s may be thought of as
describing singularities of compact Calabi-Yau’s.
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We will now describe a particular class of non-compact Calabi-Yau
manifolds that we will study. Let X be a positively curved complex surface,
c1(X) > 0. Here one should recall that c1(X) =

[
i

2π Rmn̄ dz
m ∧ dz̄n̄

]
∈

H2(X,R). We will be studying the case when

M = Total space of the canonical bundle of X = “Cone over X”.

Figure 1: The corresponding singularity is pointlike and may be then
resolved by gluing in a copy of X.

This is just like the prototypical C2/Z2-singularity (“A1-singularity”,
given by the equation xy = z2) may be resolved by gluing in a copy of CP1

at the origin. The metric on the resolved space is then the Eguchi-Hanson
metric. (However, this corresponds to M of complex dimension 2.)

1.1. First example. Calabi’s ansatz.

If X admits a Kähler-Einstein metric, the metric on M may be found by
means of an ansatz [1]

K = K(|u|2 eK),

where K and K are the Kähler potentials of M and X respectively. The
Ricci-flatness equation becomes in this case an ODE for the function K(x).
For example, for X = CP2 one obtains in this way the (generalized) Eguchi-
Hanson metric [2]. These metrics are asymptotically-conical, i.e. they have
the form

ds2 = dr2 + r2 (d̃s2)Y at r →∞,

where (d̃s2)Y is a Sasaki-Einstein metric on a 5D real manifold Y .
An important characteristic of a Kähler metric on M is the cohomology

class [ω] ∈ H2(M,R) of the Kähler form. Since M is a total space of a
line bundle, its cohomology is the same as that of the underlying surface X.
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Therefore, for instance for X = CP2 we have H2(M,R) ' R, but for
X = CP1 × CP1 we have H2(M,R) ' R2.

Calabi’s ansatz gives a metric with a very particular and fixed [ω] ∈
H2(M,R). It turns out that in this case [ω] ∈ H2

c (M,R) ⊂ H2(M,R),
where H2

c is the compactly supported cohomology. By Poincaré duality, the
group H2

c (M,R) ' H4(M,R) ' H4(X,R) ' R is one-dimensional.

1.2. The Calabi-Yau theorem.

The Calabi-Yau theorem [3], [4] states, however, that, at least for compact
M, there is a unique Ricci-flat metric in every Kähler class [ω] ∈ H2(M,R).

For the case of interest M is not compact, but rather asymptotically-
conical, and in this case there exists a proposal for a CY theorem due to
[5], [6]. Moreover, one has the decay estimates

|g − g0|g0 = O

(
1

r6

)
for [ω] ∈ H2

c (M,R)

|g − g0|g0 = O

(
1

r2

)
for [ω] ∈ H2(M,R) \H2

c (M,R),

where g0 is the conical metric. Such estimates were introduced for the case
of ALE-manifolds in [7].

1.3. Example. X = CP1 × CP1.

The theory just described can be tested explicitly at the example of X =
CP1 × CP1. The ansatz for the Kähler potential on the cone over X is a
generalized ansatz of Calabi constructed by [8], [9]:

K = a log(1 + |w2|) +K0

(
|u2|(1 + |w2|)(1 + |x2|)

)
.

The resulting metric, indeed, has two parameters that define the cohomology
class of the Kähler form [ω] ∈ H2(M,R) = R2. These correspond to the
sizes of the two spheres. The relevant Sasakian manifold Y at r → ∞ is

the conifold T 11 = SU(2)×SU(2)
U(1) , and the decay at infinity agrees with the

predicted one.

2. The del Pezzo surface

We will be interested in the next-to-simplest example when X is the del
Pezzo surface of rank one (also known as the Hirzebruch surface of rank
one), i.e. the blow-up of CP2 at one point.

A blow-up means that we replace one point in CP2 by a sphere CP1.
This CP1 ‘remembers the direction’, at which we approach the point. A
‘good’ metric on the new manifold should have two parameters, which
describe the original size of the CP2 and the size of the glued in sphere CP1.
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The del Pezzo surface is a toric manifold, and the best way to think of it is
via its moment polygon.

dP1

O(1)

O(-1)

2.1. Metrics on the cone and toric geometry

A theorem of [10] says that there does not exist a Kähler-Einstein metric
on dP1. How do we then construct a metric on the coneM over dP1? The
only hope is to use its symmetries, which are those symmetries of CP2 that
remain after the blow-up.

The relevant isometry group is U(1)× U(2), however for the moment
let us focus on the toric U(1)3 subgroup. Generally, the Kähler potential
has the form

K = K

|z1|2

=et1

, |z2|2

=et2

, |z3|2

=et3

 .

It is customary to introduce the symplectic potential G – the Legendre
transform of the Kähler potential w.r.t. ti:

G(µ1, µ2, µ3) =
3∑
j=1

µi ti −K

Here µi = ∂K
∂ti

are the moment maps for the U(1)3 symmetries of the problem.
The metric on M has the form

ds2 =
1

4
Gijdµidµj + (G−1)ijdφidφj .

The Riemann tensor with all lower indices looks as follows:

Rm̄jkn̄ = −
∑
s,t

G−1
ns

∂2G−1
jk

∂µs∂µt
G−1
tm .
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The domain, on which G is defined, is the moment polytope. The
potential G has singularities at the boundaries of the polytope. For instance,
for flat space C3 the polytope is the octant, and G has the form

Gflat =

3∑
k=1

µk (logµk − 1) .

In general, at a boundary ` = 0 the potential behaves as G = ` (log `−1)+. . .

Quite generally, Kähler metrics on toric manifolds were constructed
by [11]. They are built using Kähler quotients, and the corresponding
symplectic potential exhibits the singularities just described.

In our problem we have more symmetry: U(1)× U(2) instead of U(1)3.
The Kähler potential is therefore

K = K

|w|2
=et

, |z1|2 + |z2|2
=es

 ,

which means that the metric is of cohomogeneity-2. This implies the
following form of G:

G =
(µ

2
+ τ
)

log
(µ

2
+ τ
)

+
(µ

2
− τ
)

log
(µ

2
− τ
)
− µ logµ+G(µ, ν)

µ = µ1 + µ2, τ =
µ1 − µ2

2
, ν = µ3 .

The Ricci-flatness equation is then a Monge-Ampère equation in two
variables:

eGµ+Gν
(
GµµGνν −G2

µν

)
= µ

The domain of definition is the moment polytope of the cone M:

ν

⊕O(1) O(-3)

⊕O(-1) O(-1)

μ

dP1

O(1)

O(-1)

1

2

3
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2.2. The asymptotic behavior of G

One can construct an exact solution of the above equation taking the

conical ansatz for the metric ds2 = dr2 + r2 d̃s2. We make a change of
variables (µ, ν)→ (ν, ξ = µ

ν ) and look for G in the form (ν ∝ r2)

G = 3 ν (log ν − 1) + ν P (ξ)

One obtains an ODE for P (ξ) that can be solved exactly. As a result,

G =

2∑
i=0

µ− ξi ν
1− ξi

(log (µ− ξi ν)− 1) ,

where ξi are the roots of the cubic polynomial Q(ξ) = ξ3− 3
2 ξ

2 +d. Varying
d, one arrives at the Sasakian manifolds called Y p,q that were discovered in
[12]. The topology of the underlying del Pezzo surface forces us to pick the
manifold Y 2,1.

2.3. Uniqueness

The conical metric constructed above is singular at r = 0. Constructing a
smooth – resolved – metric is rather difficult. For the moment let us assume
that, for a fixed moment polytope, we constructed one such metric with
potential G0. To check uniqueness, one can expand G = G0 + H to first
order in H:

4G0 H = 0 ⇒ 0 =

∫
dµ dν H4G0 H

?
= −

∫
dµ dν (∇H)2

Whether we may integrate by parts depends on the behavior at infinity,
where we have asymptotically

4G0 H = 0 → − ∂

∂ξ

(
Q(ξ)

∂H

∂ξ

)
+
ξ

ν

∂

∂ν

(
ν3 ∂H

∂ν

)
= 0

Substituting H = νm h(ξ), we get a Heun equation

− d

dξ

(
Q(ξ)

dh

dξ

)
+m(m+ 2) ξ h(ξ) = 0

Therefore one needs to estimate the spectrum of the Laplacian on Y 2,1. We
have the following result:
Proposition. [13]
For the smallest non-zero eigenvalue λ of the Laplacian 4ξ =

− d
dξ

(
Q(ξ) dhdξ

)
, entering the equation 4ξf + λ ξ f = 0, one has the

lower bound λ ≥ 3.
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As a result, we obtain uniqueness of the metric for a given moment
polytope. Therefore all potential moduli of the metric have to be related to
the moduli of the polytope, which in turn are the Kähler moduli.

3. Killing-Yano forms.

One approach to the explicit construction of a metric is to require that it
admit a conformal Killing-Yano form (CKYF). First we recall some basic
examples of conditions that lead to the reduction of the holonomy group:

∇iξj = 0 ⇒ Reduced holonomy

∇iξj −∇jξi = 0 ⇒ ξ = dχ

∇iξj +∇jξi = 0 ⇒ Killing vector

The Killing-Yano form ωij dx
i ∧ dxj is defined by the equation

∇iωjk +∇jωik = 0

The conformal Killing-Yano form is defined analogously:

∇iωjk +∇jωik − trace parts = 0

On a Kähler manifold we may expand ω = ω(2,0) ⊕ ω(1,1) ⊕ ω(0,2).
The situation when ω is Hermitian, i.e. ω(2,0) = 0, is especially simple.

Introducing the ‘shifted’ form Ωab̄ = ωab̄ − h gab̄ (h = gab̄ωab̄), one gets the
equation [14]

∇aΩbc̄ = −2gac̄ ∂bh

The tensor Ω has various names, such as Hamiltonian two-form, twistor form,
etc. One can show that its eigenvalue functions xi have orthogonal gradients.
They can be related to the ‘moment map’ variables µi corresponding to
holomorphic isometries via the interesting formula:

n∏
k=1

(ϑ− xk) =

n∑
k=0

ϑk µk+1.

3.1. The orthotoric metric.

At the end of the day the metric admitting a tensor Ω has the form
(we set x1 = x, x2 = y, then µ = xy, ν = x+ y)

ds2 = x y gCP1 + (x− y)

(
dx2

P1(x)
+

dy2

P2(y)

)
+ angular part

We call this metric the ‘orthotoric metric’. We see that the variables
separated. The requirement of Ricci-flatness fixes the functions P1, P2 to
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be cubic polynomials (one of which we encountered before):

P1(x) = x3 − 3

2
x2 + c P2(y) = y3 − 3

2
y2 + d .

The domain is x ≤ xmin, y ∈ [y1, y2]. If we further require that the topology
is that of the cone over dP1, the constants c and d are uniquely fixed. This
metric was also obtained by [15], [16] and was extensively studied in [17].

The point is that the requirements of
(a) Ricci-flatness
(b) Cone over dP1 topology
(c) CKYF of type (1, 1)
completely fix the metric.

According to the Calabi-Yau theorem, however, the metric should contain
additional parameters, corresponding to the deformation of the moment
polytope. Altogether there are 2 parameters, since H2(M,R) = R2.

3.2. Deformation of the metric and the CKYF.

One parameter is somewhat ‘trivial’, as it corresponds to a rescaling of
the metric. We can still look for the other non-trivial parameter, which
corresponds to the following deformation:

ν

μ

ε

size
of	the	blown-up	CP1

In the equation 4G0 H = 0, if we substitute the orthotoric potential G0,
the variables separate:

1

x

∂

∂x

(
P1(x)

∂H

∂x

)
− 1

y

∂

∂y

(
P2(y)

∂H

∂y

)
= 0

The unique solution compatible with the deformation of the moment poly-
tope is

H(x, y) = ε

∞∫
x

dx̂

P1(x̂)
.



Ricci-flat metrics on non-compact Calabi-Yau threefolds 91

For large x one has H(x, y) = ε
2x2

+ . . ., and for the metric this implies the

asymptotic behavior |g − g0|g0 = O
(

1
r6

)
. This implies that the variation of

the Kähler form has the property [δω] ∈ H2
c (M,R).

The next question is: what happens to the Killing-Yano form? If it
is deformed, it must acquire a non-zero (2, 0) part, i.e. ω2,0 = ωmn dz

m ∧
dzn 6= 0. On a Calabi-Yau manifold one has a nowhere vanishing three-
form Ωmnp dz

m ∧ dzn ∧ dzp, and one can construct the ‘inverse’ 3-vector

Ω̃mnp ∂m ∧ ∂n ∧ ∂p . We can then dualize ω2,0 to obtain a vector field

ωp := Ω̃mnp ωmn.
Using the fact that M is Ricci-flat, we can show that ωp has to satisfy

a rather stringent requirement

Rnmpk̄ ω
p = 0 .

As we mentioned earlier, on a toric manifold the curvature tensor is

Rm̄jkn̄ = −
∑
s,t
G−1
ns

∂2G−1
jk

∂µs∂µt
G−1
tm . Using the explicit expression for the or-

thotoric potential G, we can show that the only solution is ωp = 0. The
final result may be summarized as follows:

Proposition. [13]
There exists a first-order deformation of the orthotoric metric
that preserves Ricci-flatness and corresponds to a deformation of
the moment polytope. Moreover, the deformation of the Kähler
form has the property [δω] ∈ H2

c (M,R). The deformed metric does
not possess a conformal Killing-Yano tensor.

4. Summary.

• Metrics on non-compact Calabi-Yau manifold can be sometimes con-
structed explicitly

• Examples in dimCM = 3: Cones over CP2, CP1 × CP1

• More complicated cases with conformal Killing-Yano tensors

• In the case of the cone over dP1 the corresponding metric is not the
most general one, predicted by the Calabi-Yau theorem

• One can explicitly construct a first-order deformation of the metric

• Some of the questions, which are yet to be answered, are:
What is the significance of the explicitly known (orthotoric) metric?
Can one obtain a closed expression for the metric in the general case,
or in other special cases?
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