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Abstract

It has been showed recently that spin curves space along with mass
and ultra-high spin/mass ratio of the elementary particles makes Ein-
stein’s gravity strong, shifting gravitational influence from Planck to
the Compton scale. Although this increases conflict between gravity
and quantum theory, the compatibility of the spinning Kerr-Newman
(KN) gravity with electroweak quantum particles can be achieved
by using the supersymmetric Higgs model, which creates a free from
gravity supersymmetric and superconducting core of the particle. The
corresponding BPS-saturated solution to generalized LG model takes
the form of a supersymmetric bag model, which provides a flat super-
symmetric vacuum state inside the bag. The bag is deformable, and
its shape is controlled by supersymmetry providing compatibility of
the core with external gravitational and electromagnetic (EM) field.
In particular, for the spinning KN gravity bag takes the form of oblate
disk with a circular string placed on the disk border. Excitations of
the KN EM field create circular traveling waves. The super-bag so-
lution is upgraded to the Wess-Zumino supersymmetric QED model,
indicating a bridge from the super-bag model to perturbative formal-
ism of the conventional QED.

PACS:11.27.+d, 04.20.Jb, 04.70.Bw

1. Introduction

Modern physics is based on Quantum theory and Gravity. The both theo-
ries are confirmed experimentally with great precision. Nevertheless, they
are contradicting and cannot be combined in a unified theory. This contra-
diction is mutual. On the one hand, gravitational field cannot be quantized,
on the other hand, the stochastic representation of the quantum particles as
point-like objects controlled by the wave function is not suitable for gravity,
which requires representation in terms of the real physical fields generating
the right hand side of the Einstein equations, Gµν = 8πTµν .
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Treatment of the quantum particles as the extended semiclassical ob-
jects was started in 1970’s in the models of solitons, strings and bag models,
and superstring theory was considered to be the most promising among
them. However, as mentioned John Schwarz, “...Since 1974 superstring
theory stopped to be considered as particle physics... ” and “... a realistic
model of elementary particles still appears to be a distant dream ... ” [1]).
One of the reasons of this is that extra dimensions are compactified with
extra tiny radii of order the Planck length 10−33 cm, which does not corre-
late with characteristic lengths of quantum physics and makes impossible to
test extra dimensions with currently available energies. The idea to bring
fundamental gravitational scale close to the weak scale was considered in
different approaches, and in particular, in the brane world scenario, where
the weakness of the localized 4d gravity is explained by its “leaks” into the
higher-dimensional bulk, and the brane world mechanism allowed to realize
ideas of the superstring theory for any numbers of the extra dimensions [2].

Alternative ideas were related with nonperturbative 4D solutions of the
non-linear field models – solitons, in particular, solitonic solutions to low
energy string theory [3, 4, 5, 6]. This approach, being nonperturbative,
is akin to the Higgs mechanism of symmetry breaking and linked with
nonperturbative approach to electroweak sector of the Standard Model.
The most known is the Nielsen-Olesen model of dual string based on the
Landau-Ginzburg field model for a phase transition in superconducting
media, and also the famous MIT and SLAC bag models [7, 8, 9] which
are similar to solitons, but being soft, deformable and oscillating, acquire
many properties of the dual string models. Besides, being suggested for
confinement of quarks, the bag models assume consistent implementation
of the Dirac equation. The question on consistency with gravity is not
discussed usually for the solitonic models, as it is conventionally assumed
that gravity is very weak and is not essential on the scale of electroweak
interactions. For example, in [10] we read ”... quantum gravity effects are
usually very small, due to the weakness of gravity relative to other forces.
Because the effects of gravity are proportional to the mass, or the energy
of the particle, they grow at high energies. At energies of the order of E
1019 GeV, gravity would have a strength comparable with that of the other
Standard Model interactions.”

Meanwhile, in a relativistic theory, spin is not separable from rotation,
and its influence on metric should also be taken into account. Analyzing
metric of the Kerr-Newman (KN) rotating black hole solution with parame-
ters of an electron, we obtain strong influence of spin and recognize that the
usual assumption on the weakness of gravity is not correct. Indeed, nobody
says that gravity is weak in Cosmology where physics is determined by gi-
ant masses. Similarly, the giant spin/mass ratio of the elementary particles,
J/m = 1020 − 1022 (in the dimensionless Planck’s units G = c = ~ = 1)
shows that the energy equivalent to unit of quantum spin on the Planck
scale must be the unit of Planck mass EP = MP = 1, leading to the ratio
J/m ≈ MP /m ∼ 1020. It shows that giant spin of particles must have a
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giant impact on the metric. The commonly accepted view that gravity is
weak and not essential in particle physics becomes not compatible with
Planck scale of gravitational interaction, and should be replaced by prin-
cipally new point of view that scale of gravitational interaction is to be
shifted about 20 orders of magnitude to the Compton lengths [11, 12, 13].
Influence of spin on metric becomes extreme strong, and even crucial for
the electroweak interactions.

Analysis of the Kerr-Newman (KN) solution with parameters of an elec-
tron confirms this statement, showing that space-time is strongly deformed
in the Compton zone, contrary to the usually accepted Planck length, and
reason of this deformation is that spin deforms space along with mass. In
other words, spin is gravitating, and ultra-high spin/mass ration of the
electron, a = J/m ∼ 1022, breaks space topologically, creating the naked
singular ring and two-sheeted space, which differs from Minkowski space so
strongly that neither Dirac theory nor perturbative QED can be applied.

This great influence of spin, leading to drastic shifts of the scale of
gravitational interaction was not taken into account before, and apparently,
it was the main reason of the failure previous attempts of unification of
gravity with particle physics. So large shifts of the scale of interaction
creates a new paradigm and requires a principally new approach, in which
gravity is not subordinated to quantum theory, and both these theories
impact on process of unification on an equal footing.

In this article we suggest a solution of the problem of unification with
gravity based on this new paradigm. We show that conflict between gravity
and quantum theory can be resolved without modification of the Einstein-
Maxwell gravity – the spoiled by gravity space can be cured by a supersym-
metric bag model, in which the singular region of KN solution is replaced
by the flat internal space of the Compton size. We find the correspond-
ing non-perturbative BPS-saturated solution in frame of the supersymmet-
ric generalized Landau-Ginzburg model, in which boundary of the bag is
formed by a domain wall interpolating between the external KN gravity and
the supersymmetric vacuum state inside the bag. Similar to the usual bag
models, the super-bag model is deformable and displays a super-consistency
with the external gravitational and electromagnetic KN field, in the sense
that its shape and dynamics are fully defined by matching its boundary
with a special surface (which can be called as ”zero gravity surface” ),
where the external gravitational field is compensated by electromagnetic
field. This surface determines position of the domain wall, and therefore,
it determines shape of the bag, which gets a disk-like configuration with a
closed string lying along sharp border of the disk [14, 15, 16, 17]. There-
fore, this new concept leads us again to a string theory, which is however,
four-dimensional, and differs essentially from the famous superstring theory
based on compactification of higher dimensions at Planck scale.

One of the main and the most studied quantum particles is an electron,
and assuming that dressed electron has such a SuperBag structure we have
to explain first of all, while this structure was not observed experimentally,
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and second, to put out the possible relationship with the Dirac theory
of electron and with perturbative QED. The first signal on the relation
of the KN solution with Dirac electron was obtained by Carter [18, 19],
who obtained that KN solution has gyromagnetic ratio g = 2 as that of
the Dirac electron. Besides, one of the basic features of the Bag models is
compatibility with the Dirac equation [7, 8], which in the Kerr geometry was
supported by two aligned spinor solutions given by the Kerr theorem, [20,
14]. The link with QED is much more problematic, and we show here that
the supersymmetric Landau-Ginzburg model can naturally be upgraded to
the Wess-Zumino SuperQED model [21], revealing connections of the non-
perturbative SuperBag solution with the conventional perturbative technics
used in QED.

2. Super-bag model as BPS solution to generalized LG model

2.1. Basic features of the ultra-rotating Kerr-Newman solution

It has been recently obtained [22, 23], that the source of ultra-spinning
Kerr-Newman (KN) solution can be considered as a superconducting soli-
ton having many features of the bag model [14, 15, 24], but with the es-
sential advantage of compatibility with Einstein-Maxwell gravity in four
dimensions. As is known, the bag models take intermediate position be-
tween strings and solitons [25, 26, 27]. Although, the bags were initially
offered as the extended models of hadrons, [7, 8, 9], being based on the
Abelian Higgs model of symmetry breaking their indicated rather applica-
bility to the Salam-Weinberg model of leptons, which was one of the reasons
to consider the gravitating KN bag as the model for consistent with gravity
leptons.

The spinning KN solution is of particular interest in this regard, since,
as it was obtained by Carter [19, 18], that gyromagnetic ratio of the KN
solution is g = 2, and therefore corresponds to the external field of the
electron. The spin/mass ratio of the electron is about 1022, and structure
of source of the KN solution for such a huge spin should shed the light on
origin of the conflict between gravity and quantum theory. One can see
that the KN field with parameters of electron becomes extremely strong on
the Compton distances, so that the BH horizons disappear and the Kerr
singular ring of the Compton radius a = ~/m becomes open, which breaks
topology of space-time and creates two-sheeted metric.
In the Kerr-Schild approach, metric of the KN solutions is [19]

gµν = ηµν + 2Hkµkν , (1)

where ηµν is metric of an auxiliary Minkowski space M4, (signature (− +
++)), and H is the scalar function which for the KN solution takes the
form

HKN =
mr − e2/2

r2 + a2 cos2 θ
, (2)
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where r and θ are oblate spheroidal coordinates, and kµ is a null vector
field kµk

µ = 0, forming a Kerr congruence – the vortex of polarization of
gravitational and electromagnetic field in the Kerr space-time, see Fig.1.
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Figure 1: Vortex of the Kerr light-like (null) congruence kµ propagates
analytically from negative sheet of Kerr metric, r < 0, to positive one,
r > 0. In the equatorial plane, cos θ = 0, the Kerr congruence is focused
on the Kerr singular ring, r = cos θ = 0.

The Kerr singular ring corresponds to border of the disk r = 0, in the
equatorial plane cos θ = 0.

Similarly, vector potential of KN solution is also collinear with the null
direction kµ,

Aµ = − er

(r2 + a2 cos2 θ)
kµ (3)

The KN metric becomes two-sheeted, since the Kerr congruence

kµdx
µ = dr − dt− a sin2 θdφ, (4)

is out-going at the ‘positive’ sheet of the metric, r > 0, and passes ana-
lytically to ‘negative’ sheet, r < 0, being extended via ring r = 0, where
it becomes in-going. The two null vector fields kµ(x)± become different at
r > 0 and r < 0, leading to two different metrics g±µν = ηµν + 2Hk±µ k

±
ν on

the positive and negative sheet of the same Minkowski background. Sim-
ilarly, it leads also to two-sheeted vector-potential A±µ , that makes space
inappropriate for quantum theory, and therefore, conflict between quantum
theory and gravity is shifted by 22 orders earlier then it is usually expected,
from the Planck to the Compton scale. As usually, singularity is signal to
new physics – theory of more high level. The KN gravitational field is
strong near the Kerr singular ring and creates vortex of the space-time po-
larization in the Compton zone of the dressed electron, which should be flat
for work of quantum theory. It is usually assumed that in vicinity of strong
field, gravity should be modified to a new Quantum Gravity. Taking into
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account sharp incompatibility of Quantum and Gravity, natural require-
ment for such new theory would be separation of their zones of influence:
formation of the internal zone

(I) – flat core for quantum theory, and external zone
(E) – for undisturbed gravitational and electromagnetic fields.
There should also be selected intermediate zone
(R) – interpolating between (I) and (E).

In the case of strong KN field, these demands become so restrictive that de-
termine structure of the new theory almost uniquely. It turns out that the
flat Compton zone free from gravity may be achieved without modification
of the Einstein-Maxwell equations, through SUPERSYMMETRY, which
eats up the strong gravitational field in the core of particle. Expelling grav-
ity from the core of the KN spinning particle is similar to expelling the EM
field from superconducting core, and both of these super-phenomena are re-
alized in core of the KN solution by the supersymmertric Landau-Ginzburg
field model [28, 29, 30, 31, 32, 33, 34, 21] in the form of a BPS-saturated
Super-Bag solution, for which just the strong contradiction between Quan-
tum and Gravity determines extreme sensitivity of the model to the choice
of the separating surface (R).

The natural choice of this surface for the KN solution was suggested by
C. López [35]. According (1) and (2) it should be the ”zero gravity” (ZG)
surface

r = R =
e2

2m
, (5)

where function H vanishes

HKN (R) = 0, (6)

metric becomes flat, and can be matched with flat Minkowski space for
r < R. It turns the López source of the KN solution in a shell-like bubble.

The corresponding metrics were suggested by Gürsay and Gürses [36].
They have the Kerr-Schild form (1) and retain the form of the Kerr con-
gruence (4), while the function H is changed as follows,

H =
f(r)

r2 + a2 cos2 θ
, (7)

where f(r) is arbitrary smooth function of the Kerr radial coordinate r,
taking at the far distances the KN form (2).

So far as in the Kerr solution r is oblate spheroidal coordinate [19],
which is related with Cartesian coordinates by transformations

x+ iy = (r + ia) exp{iφK} sin θ, z = r cos θ, ρ = r − t, (8)

the bubble surface r = R takes the oblate ellipsoidal form – the disk of the
thickness R and radius rc =

√
R2 + a2, where a = J/m.
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Figure 2: Behavior of the function f(r) in bag model. Domain wall placed
at r = R separates flat Quantum interior from external KN Gravity .

For solutions without rotation, a = 0, and bubble turns into a sphere of
the classical radius re. Such spherical shape was suggested by Dirac in [37]
as an ”extensible electron model” – prototype of the bag models, displaying
one of their basic features of the bags – their deformability.

We see that deformations of the KN Super-Bag appear as consequence
of the requirement on sharp separation of the zones (I),(E),(R).
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Figure 3: (A): Spherical bag without rotation a/R = 0, and disk-like bags
for different values of the rotation parameter: (B)- a/R = 3; (C) - a/R = 7;
and (D) - a/R = 10.
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3. Supersymmetry ensures consistency with gravity

3.1. Generalized Landau-Ginzburg field model and domain wall
(DW) phase transition

The Landau-Ginzburg field model of superconductivity is used in many
solitonic models, in particular, in the Nielsen-Olesen dual string model, as
a field model in the MIT and SLAC bag models, and really, it is also the the
Higgs model of symmetry breaking, because the Higgs vacuum itself ”... is
analog to a superconducting metal”, [9]. The Landau-Ginzburg Lagrangian
used in the Nielsen-Olesen model (minimal Landau-Ginzburg model) is

LNO = −1

4
FµνF

µν − 1

2
(DµΦ)(DµΦ)∗ − V (|Φ|), (9)

where Dµ = ∇µ + ieAµ are the U(1) covariant derivatives, and Fµν =
Aµ,ν − Aν,µ is the corresponding field strength, and potential V has the
quartic form

V = λ(Φ†Φ− η2)2, (10)

where η is condensate of the Higgs field Φ, its vacuum expectation value
(vev) η < |Φ| >, [43].

The minimal Landau-Ginzburg model can be used to describe super-
conductivity inside the bag – interplay of the KN vector-potential with the
Higgs condensate. Since requirements (I),(E),(R) define inside the bag a
flat space, the corresponding covariant derivatives can be taken as flat,

Dµ = ∇µ + ieAµ → Dµ = ∂µ + ieAµ. (11)

However, the NO and KN models have opposite spacial configurations:
the KN bag model should describe a superconducting disk surrounded by
the long-range EM and gravitational field, while the NO model describes
vortex of the EM field inside the superconducting Higgs condensate which
breaks the external long-range EM and gravitational field. Note, that this
is a typical drawback of the most of soliton models and, in particular, the
usual bag models which are formed as a ”cavity in superconductor” [9].
The reason of this disadvantage lies in the use of the potential (10).

The correct opposite configuration – condensation of the Higgs field
inside the core – requires more complex scalar potential V formed from
several complex fields Φi, i = 1, 2, 3, [22]. Kinetic part of the corresponding
generalized LG model differs from those of the minimal Landau-Ginzburg
model (9) only by summation over the fields Φi,

LGLGkin = −1

4
FµνF

µν − 1

2

∑
i

(DiµΦi)(Dµi Φi)
∗, (12)

while the potential V is changed very essentially, and has to be formed by
analogy with machinery of the N = 1 supersymmetric field theory [21] from
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a superpotential function W (Φi).
1 The scalar potential2

V (r) =
∑
i

FiF
∗
i (13)

is formed through derivatives of the function W (Φi),

Fi = ∂W/∂Φi ≡ ∂iW, (14)

where
W (Φi, Φ̄i) = Z(ΣΣ̄− η2) + (Z + µ)HH̄, (15)

µ and η are real constants, and the special notations are introduced (H,Z,Σ) ≡
(Φ1,Φ2,Φ3), to identify Φ1 as the complex Higgs field

H = |H|eiχ, (16)

which interacts with the KN vector field Aµ as D1µ = ∇1µ + ieAµ. The
fields Φ2 and Φ3 are assumed uncharged, and Diµ = ∇iµ for i = 2, 3.

The condition Fi = ∂iW = 0 determines two vacuum states with V = 0:
(I) internal vacua: r < R − δ, where the Higgs field |H| = η, and

Z = −µ, Σ = 0,
and
(E) external vacuum state: r > R + δ, where the Higgs field H = 0,

and Z = 0, Σ = η,
separated by spike of the potential V > 0 in zone
(R) – a domain wall, interpolating between zones (I) and (E), in the

full correspondence with the requirements (I),(E),(R).
Reduction of the corresponding LG equations to Bogomolny form is

performed by minimization of the energy density per unit area of the DW
surface,

µ =
1

2

3∑
i=1

[
3∑

µ=0

|D(i)
µ Φi|2 + |∂iW |2]. (17)

The four dimensional domain wall solutions in supersymmetric Landau-
Ginzburg model have paid attention in the works [28, 29, 30, 31, 32, 33, 34],
where it was usually considered the static planar domain walls positioned
in (x,y) plane, with the transverse to the wall z-direction. However, even
in the simplest case of the one field Φ(z) and one coordinate z,

µ =
1

2
(|∂zΦ|2 + |∂ΦW |2), (18)

1It is really not only analogy, and as we shell see, only one step differs this model
from the true supersymmetric Higgs model, which was obtained by Morris in [48] with
the purpose to get supersymmetric generalization of the Witten superconducting string
model [49]. This model was used in [22, 23] to describe superconducting core of the KN
solution.

2The signs bar¯and star ∗ both are used for complex conjugation.
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reduction of the LG equation to Bogomolny form turns out to be nontrivial,
since it requires the introduction of an arbitrary phase factor α, so that (18)
can be equivalently presented in the form

µ =
1

2
|∂zΦ− eiα∂Φ̄W̄ |2 +Re eiα∂zW, (19)

which is saturated by the Bogomolny equation

∂zΦ = eiα∂Φ̄W̄ . (20)

The domain wall forming the KN bag is much more complicated, since
first of all it is not planar, but forms the spheroidal boundary profile of
which is shown in Fig.2. Second, it is formed by three chiral fields Φi, and
thirdly, the most important feature is that this domain wall is not static
and has non-trivial dependence on the phases of the complex fields Φi. The
corresponding BPS saturated solution was found in [15, 24], where it was
shown that the phases αi of the complex fields Φi should acquire nontrivial
dependence from time and angular coordinate

α1 = 2χ(t, φ), α2 = α3 = 0, (21)

and the Higgs field becomes oscillating, showing that just in the KN bag
model the transformation to Bogomolny form (19) begins to operate at full
power.
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Figure 4: The domain wall profile (axial section) defined by the oblate
spheroidal coordinate r = R.

3.2. Minimal Landau-Ginzburg model and quantization of the
angular momentum

The non-trivial dependence (21) is fixed in zone (I), where the general-
ized Landau-Ginzburg model is reduced to minimal LG model, and the
Lagrangian (9) leads to equations

�Aµ = Jµ = e|H|2(χ,µ +eAµ). (22)
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One sees that vector potential Aµ acquires from the Higgs field the mass
term mv = e|H|, and the EM field becomes short-range, with the charac-
teristic parameter λ = 1/(e|H|) corresponding to the penetration depth of
the EM field in superconductivity. As a consequence, the currents vanish
inside the core, Jµ = 0, leading to the equations

�Aµ = 0, χ,µ +eAµ = 0, (23)

showing that besides of the massive component Amvµ which falls off receiving
the mass mv from the Higgs field, there are also the components of different
behavior.

Vector-potential of the external KN solution (3) is

Aµdx
µ = − er

r2 + a2 cos2 θ
(dr − dt− a sin2 θdφ). (24)

It grows near the core and takes maximal value at the boundary of the
disk, at r = R = e2/2m, cos θ = 0,

Amaxµ dxµ = − 2m

e
(dr − dt− adφ). (25)

Note, that the component Ar is a perfect differential (as it is shown for
example in [19]) and can be ignored. At the boundary, Amaxµ is dragged
by the light-like direction of the Kerr singular ring (see Fig.3) and the
component Amaxφ forms the closed Wilson loop, so that

e

∮
Amaxφ dφ = 4πma. (26)

The right equation in (23) shows that penetrating inside the disk vector
potential determines oscillating phase of the Higgs field as χ = 2mt +
2amφ. The condition of multiplicity of the periods χ and φ gives 2am =
n, n = 1, 2, 3, .., which in view of J = ma, leads to quantization of angular
momentum as

J = n/2, n = 1, 2, 3, ... (27)

On the other hand (23) shows that phase of Higgs field

H = Φ1 = |H|ei(2mt+2amφ) (28)

oscillates with the frequency ω = 2m which supports extension of the com-
ponents Aint = 2m

e , Ainφ = 2ma
e inside the disk.3 At the disk boundary

(23) is broken, and according (22) there appear the surface currents Jµ.

3Note, that the left massless equation (23) is also satisfied, since �Aint = 0 is satisfied
trivially. Also, �Ainφ = 0, because phase φ is analytic function of (x + iy), leading to

�Ainφ = ∂∂̄Ainφ = 0. These fields do not produce the field strength.
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Figure 5: Kerr’s coordinate φ = const. Kerr singular ring drags the vector
potential, forming a closed Wilson loop along edge border of the DW.

4. SuperBag as nonperturbative solution of the SuperQED
model

4.1. Bosonic sector of the supersymmetric LG model

As we noticed earlier, the generalized Lndau-Ginzburg model based on
the superpotential (15) is not true supersymmetric model. The difference
is that the true superpotential W is to be a chiral function of the chiral
superfields Φi, while the scalar potential

V = FiF
∗
i (29)

is formed from the chiral part

F ∗i = ∂W/∂Φi, (30)

but also incudes the antichiral superpotential W+(Φ+
i ) depending on the

antichiral superfields Φ+
i

Fi = ∂W+/∂Φ+
i . (31)

These relations are retained in the bosonic sector of the supersymmetric
theory, where the fields Φi and Φ+

i turn into the complex conjugate scalar
components of the superfields.

To get full correspondence with supersymmetric theory, the fields Φi and
Φ̄i in (15), should be considered as independent chiral fields Φi and Φ̃i, and

there should also be introduced an antichiral superpotential W+(Φ+
i , Φ̃

+
i ),

which in the bosonic sector turns into complex conjugated superpotential,
built of the complex conjugated fields W̄ (Φ∗i , Φ̃

∗
i ). From the complex point
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of view, the transition from (15) to supersymmeric Higgs model may be
considered as complexification of the moduli space – analytical extension
from the real section, fixed by condition Φ̄i = Φ∗i , to its complex extension,

the manifold with independent coordinates Φi and Φ̃i, supplemented with
complex conjugate coordinates Φ∗i , Φ̃∗i . Therefore, the transition to bosonic
sector of the supersymmetric generalized LG model requires doubling of the
chiral field to eliminate their degeneracy on the real slice.

Returning to the original work by Morris [48], where the potential (15)
was suggested for super-generalization of the Witten’s superconducting
string model [49], we should double the charged chiral fields Σ and Φ,
and consider five chiral superfields Σ±,Φ±, and Z, which in Witten’s inter-
pretation of this model as the U(I)× U ′(I) Higgs field model, acquire the
charges (±1, 0) for Φ±, and charges for the Σ± fields as (0,±1). The chiral
superpotential (15) takes the form

W (Φi, Φ̃i) = Z(Σ+Σ− − η2) + (Z + µ)Φ+Φ−, (32)

with identification
Φi = (Φ+,Φ−,Σ+,Σ−, Z). (33)

The auxiliary fields

F ∗i = ∂W/∂Φi = (F ∗+, F
∗
−, F

∗
Σ+, F

∗
Σ−, F

∗
Z) (34)

take the form

F ∗± = (Z + µ)Φ∓, (35)

F ∗Σ± = ZΣ∓, (36)

F ∗Z = Σ+Σ− + Φ+Φ− − η2, (37)

Vacuum expectation values of fields Φi for which F ∗i = 0 give minima of
the potential V = 0 corresponding to supersymmetric vacuum states. Just
as in case (15), we obtain two isolated vacua

(I) Φ−Φ+ = η2, Z = −µ, Σ+ = Σ− = 0;
(E) Φ− = Φ+ = 0, Z = 0, Σ+Σ− = η2;
separated by the zone
(R) of the positive potential

V = |Σ+Σ− + Φ+Φ− − η2|2 + |(Z + µ)Φ+|2

+|(Z + µ)Φ−|2 + |Z|2(|Σ+|2 + |Σ−|2). (38)

4.2. Transition to SuperQED model

We note that two oppositely charged superfields Φ+ and Φ− give rise to
correspondence of the supersymmetric Landau-Ginzburg model to kinetic
part of the Wess-Zumino SuperQED model [21],

LSQEDkin = −1

4
W aWa + Φ+

+e
eV Φ+|θθθ̄θ̄ + Φ+

−e
−eV Φ−|θθθ̄θ̄, (39)
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where V is vector superfield, and W a = −1
4D̄D̄DαV. In the same time, the

potential part (32) corresponds to the most general renormalizable super-
symmetric Lagrangian and gives rise to nonperturbative generalization of
the SuperQED model.

The chiral superfields Φ±, are expressed in the component form

Φ±(y) = H±(yµ) +
√

2θψ±(yµ) + θθF±(yµ), (40)

as functions of the chiral coordinates yµ = xµ+ iθσµθ̄ and θ, and the scalar
components H± are independent Higgs fields, splitting of the complex con-
jugated Higgs field of the minimal Landau-Ginzburg model in (15) and (16).
Interplay of the oppositely charged Higgs fields H± with vector potential
in zone (I) is defined by (23) and yields

H± = |H±|e±iχ, H̄± = |H±|e∓iχ, χ = 2mt+ 2amφ, (41)

where the fields H̄± are scalar components of the antichiral fields

Φ+
±(y+) = H̄±(y+µ) +

√
2θ̄ψ̄±(y+µ) + θ̄θ̄F̄±(y+µ), (42)

as functions of the antichiral coordinates y+µ = xµ − iθσµθ̄ and θ̄. The
corresponding nonperturbative solution with doubled Higgs fields (41) can
be obtained similar to [15].

In the Wess-Zumino SuperQED model, the two Weyl spinors ψ± in (40)
combine into one massive Dirac spinor of the electron – superpartner of the
Higgs doublet H±, [21].

The nonperturbative super-bag solution generates in the core of spin-
ning particle the flat Compton zone (I), which is free from gravity and
supersymmetric, representing the conditions for the work of the pertur-
bative SuperQED model, while the remarkable perturbative properties of
the WZ SuperQED model – ”miracleous cancellations” of the component
super-graphs [21] – form a link to perturbative QED. Note, that in the non-
perturbative model of super-bag, the superpartners cannot be considered
as separate particles, and are integrated as the superfield components of a
single nonperturbative solution. The super-bag model reveals correspon-
dence not only with gravity and electroweak sector of the SM, but also with
a nonperturbative version of the SuperQED model.

5. Stringy structure

Usually, it is assumed that bags are deformed by rotations taking the shape
of a string-like flux-tube joining the quark-antiquark pair [7].

In the KN Super-Bag, the spinning gravitational field controls disk-like
shape of the bag, and string-like structure is formed for a/R > 0, at edge
rim of the disk, as shown in Fig.4. In the equatorial plane, this string
approaches very close to the Kerr singular ring, see Fig.4A, so, it is really
just the singular ring regularized by the bag boundary.
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Figure 6: Regularization of the KN string. Boundary of bag fixes cut-off
R = re for the Kerr singular ring. A) The exact KN solution. B) The KN
solution is excited by the lowest traveling mode: emergence of the singular
pole.

Among diverse attempts to use nonperturbative models in the elec-
troweak sector of the Standard Model (SM) [38, 39, 40, 41, 42], the central
place takes the Nielsen-Olesen (NO) model [43, 44] of the string, which is
created as a vortex line in a superconductor.

The assumption, that Kerr singular ring is similar to Nielsen-Olesen
model of dual string was done very long ago in [46, 45], where it was
noted that excitations of the KN solution create traveling waves along the
Kerr ring. Later, it was obtained in [5, 6] close connection of the Kerr
singular ring with the Sen fundamental string solution to low energy string
theory.4 In the KN bag model this string is formed at the sharp boundary
of the superconducting disk, as a dual analog of the NO vortex line in
superconductor.

In accordance with the condition (6), the KN gravity controls position
of the bag boundary (R), and also more thin effects, such as excitations of
the KN gravity define dynamics of the bag and appearance of the traveling
waves.

In particular, it has been shown [15], that the lowest EM excitation of
the KN solution creates the traveling wave which has a circulating lightlike
node. At this point, surface of the deformed bag touches the Kerr singular
ring, as it is shown in Fig.4B, which breaks regularization at this point and
creates the lightlike singular pole, which can be considered as emergence
of the bare Dirac particle circulating inside the Compton zone of dressed

4Note also the complex N=2 critical string which was obtained in the complex Kerr
geometry [47].
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electron. On the other hand, this pole breaks homogeneity of the closed
circular string, creating the frontal and rear ends turning this string in the
open. As usual, the end points of an open string are associated with quarks,
and the KN super-bag model turns into a single “bag-string-quark” system,
4D analog of D2-D1-D0-brane system of the string–M-theory.

6. Conclusions

We have considered principal features of the Kerr-Schild geometry which
specify the supersymmetric bag model as a new way to particle physics
consistent with gravity and electroweak sector of the SM. Two of these
features are principally new, relative to the widespread belief:

– the spinning KN gravity is not weak, and becomes very strong at the
Compton scale of the particle physics,

– compatibility between Quantum and Gravity can be achieved by
means of supersymmetric generalization of the matter sector, without mod-
ification of the Einstein-Maxwell theory.

We considered interplay of the KN gravity with the matter sector based
on the supersymmetric generalized LG field model, which is equivalent
to supersymmetric Higgs mechanism of symmetry breaking, and give a
nonperturbative solution to generalized Landau-Ginzburg field model in the
form of a super-bag – nonperturbative version of the SuperQED model. By
conception, the 4d super-bag model has to be soft and oscillating, similar
to the conception of the superstring models [8, 25, 26].

Due to extreme high spin/mass ratio, impact of the gravitational KN
field on the structure of space-time becomes very strong, and the consis-
tent supersymmetric nonperturbative solutions become very sensible to the
external Einstein-Maxwell field. As a result,

a) the super-bag model creates a free from gravity Compton core of
spinning particle, where the supersymmetric vacuum state of the Higgs field
provides the flat space, required for consistent work of quantum theory;

b) the super-bag takes the shape of a strongly oblate disk forming a
circular string along its border;

c) gravitational and electromagnetic excitations of the KN solution cre-
ate consistent stringy oscillations of the super-bag in the form of traveling
waves.

Many problems remain to be solved. The closest is the so far unsolved
problem of the exact nonstationary (oscillating or accelerating) generaliza-
tion of the KN solution, the problem of the consistent solutions of the Dirac
equation corresponding to confinement of quark inside the bag, and so on.

Nevertheless, the considered here features of the super-bag model are
so intriguing that we risk to state that they really give the key to solution
of the problem of unification of gravity with particle physics.

Finally, very important new aspect of this study is the direct link to
non-perturbative Wess-Zumino SuperQED model, which provides remark-
able cancellations between component diagrams, presenting a link between
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the nonperturbative bag-like solution and the conventional technics of the
perturbative QED.
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