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Abstract

In a holographic braneworld universe a cosmological fluid occupies a 3+1 di-
mensional brane located at the boundary of the asymptotic AdS5 bulk. The
AdS/CFT correspondence and the second Randall-Sundrum model are combined
to establish a relationship between the RSII braneworld cosmology and the bound-
ary metric induced by the time dependent bulk geometry. Some physically interest-
ing scenarios are discussed in the framework of the Friedmann Robertson Walker
cosmology involving the RSII and holographic braneworlds.
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Figure 1: Illustration of the AdS5 bulk with two branes: RSII brane located
at z = zbr and the holographic brane at z = 0.

1. Introduction

Branewarld cosmology is based on the scenario in which matter is confined
on a brane moving in the higher dimensional bulk with only gravity allowed
to propagate in the bulk [1, 2, 3, 4]. The brane can be placed, e.g., at the
boundary of a 5-dim asymptotically Anti de Sitter space (AdS5). Anti de
Sitter space is dual to a conformal field theory at its boundary through
the so called AdS/CFT correspondence [5]. This correspondence reflects
an obvious symmetry relationship: On the one hand, AdS5 is a maximally
symmetric solution to Einsteins equations with negative cosmological con-
stant with the symmetry group AdS5 ≡ SO(4,2). On the other hand, the
3+1 boundary conformal field theory is invariant under conformal transfor-
mations: Poincaré + dilatations + special conformal transformation. These
transformations constitute the conformal group ≡ SO(4,2).

We will consider two types of braneworlds (Fig. 1): 1) Holographic
braneworld in with a 3-brane located at the boundary of the asymptotic
AdS5. The cosmology is governed by matter on the brane in addition to
the boundary CFT. 2) Randall-Sundrum braneworld with a 3-brane located
at a finite distance from the boundary of AdS5. We will demonstrate that
there exists a map between these two substantially different scenarios. Most
of the material presented here is based on [6] and earlier works [7, 8, 9, 10].

We use the metric signature (+,− − −−) and curvature convention
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Rabcd = ∂cΓ
a
db−∂dΓacb+ΓedbΓ

a
ce−ΓecbΓ

a
de and Rab = Rsasb, so that Einstein’s

equations are Rab − 1
2RGab = +8πGTab.

2. Randall-Sundrum model

2.1. Basics

The Randall-Sundrum (RS) model [1, 2]. is a simple physically relevant
model related to AdS/CFT. The model was originally proposed as a solu-
tion to the hierarchy problem in particle physics and as a possible mech-
anism for localizing gravity on the 3+1 dimensional universe embedded in
a 4+1 spacetime without compactification of the extra dimension. It was
soon realized that the RS model is deeply rooted in a wider framework of
AdS/CFT correspondence [11, 12, 13, 14, 15, 16, 17].

The Randall-Sundrum model is a 4+1-dimensional universe with AdS5

geometry containing two 3-branes with opposite brane tensions separated
in the 5th dimension. The total action is a sum

S = Sbulk + SGH + Sbr1 + Sbr2, (1)

where

Sbulk =
1

8πG5

∫
d5x
√
G

[
−R

(5)

2
− Λ5

]
, (2)

is the bulk action, Λ5 being the bulk cosmological constant related to
the AdS curvature radius as Λ5 = −6/`2. The remaining terms are the
Gibbons-Hawking boundary term

SGH[h] =
1

8πG5

∫
Σ
d4x
√
−hK[h]. (3)

and two brane actions of the form

Sbr[h] =

∫
Σ
d4x
√
−h(−σ + Lmatt[h]). (4)

Here we denote by G the determinant of the bulk metric Gµν , by h the
determinant of the metric hµν induced on the hypersurface Σ, and by σ the
brane tension. Matter on the brane is described by the Lagrangian Lmatt.

In the following we will make use of various coordinate systems:

1. Fefferman-Graham coordinates

ds2
(5) = Gabdx

adxb =
`2

z2

(
gµνdx

µdxν − dz2
)
, (5)

2. Gaussian normal coordinates

ds2
(5) = e−2y/`gµνdx

µdxν − dy2, (6)
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3. Schwarzschild coordinates

ds2
ASch = f(r)dt2 − dr2

f(r)
− r2dΩ2

κ, (7)

where

f(r) =
r2

`2
+ κ− µ`

2

r2
, (8)

and

dΩ2
κ = dχ2 +

sin2(
√
κχ)

κ
(dϑ2 + sin2 ϑdϕ2) (9)

is the spatial line element for a closed (κ = 1), open hyperbolic (κ =
−1), or open flat (κ = 0) space. The dimensionless parameter µ is
related to the black-hole mass via [18, 19]

µ =
8G5Mbh

3π`2
. (10)

These coordinate representations are related via simple coordinate trans-
formations

z = ey/`,
r2

`2
=
`2

z2
− κ

2
+
κ2 + 4µ

16

z2

`2
. (11)

2.2. Second Randall-Sundrum model (RSII)

The RSII model [2] was proposed as an alternative to compactification of
extra dimensions. A compactification of extra dimensions is necessary to
localize gravity on the 3+1 dimensional universe. If extra dimensions were
large that would yield unobserved modification of Newton’s gravitational
law. Experimental bound on the volume of n extra dimensions is [20]

V 1/n ≤ 0.1mm. (12)

RSII brane-world does not rely on compactification to localize gravity at
the brane, but on the curvature of the bulk (“warped compactification).
The negative cosmological constant Λ5 acts to squeeze the gravitational
field closer to the brane. One can see this in Gaussian normal coordinates
(6) with an exponentially attenuating warp factor e−2`y.

In RSII observers reside on the positive tension brane at y = 0 and the
negative tension brane is pushed off to infinity in the fifth dimension. In
the original RSII model one assumes the Z2 symmetry z ↔ z2

br/z, so the
region 0 < z ≤ zbr is identified with zbr ≤ z <∞, with the observer brane
at the fixed point z = zbr. Hence, the braneworld is sitting between two
patches of AdS5, one on either side, and is therefore dubbed “two-sided”
[15, 17]. In contrast, in the “one-sided” RSII model the region 0 ≤ z ≤ zbr

is simply cut off so the bulk is the section of spacetime zbr ≤ z <∞.
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The Planck mass scale is determined by the curvature of the five-
dimensional space-time

1

GN
=

γ

G5

∫ ∞
ybr

dyψ2 =
γ`

2G5
. (13)

where we have introduced the “sidedness” parameter γ [6] to facilitate a
joint description of the two versions of RSII model: the one-sided (γ = 1)
and two-sided (γ = 2). One usually imposes a fine tuning condition on the
brane tension

σ = σ0 ≡
3γ

8πG5`
=

3

4πGN`2
. (14)

which eliminates the 4-dim cosmological constant. Note that the RSII fine
tuning condition does not depend on the sidedness γ if σ0 is expressed in
terms of the four-dimensional Newton constant.

Table top measurements of the Newton gravitational law impose a
bound on the AdS5 curvature radius. The classical 3+1 dimensional grav-
ity is altered on the RSII brane due to the extra dimension. For r � ` the
weak gravitational potential created by an isolated matter source on the
brane is given by [21]

Φ(r) =
GNM

r

(
1 +

2`2

3r2

)
. (15)

Table-top tests of Long et al [20] find no deviations of Newton’s potential
at distances greater than 0.1 mm and place the limit curvature

` < 0.1mm, or `−1 > 10−12GeV. (16)

2.3. RSII cosmology – Dynamical brane

Branewarld cosmology is based on the scenario in which matter is confined
on a brane moving in the higher dimensional bulk with only gravity allowed
to propagate in the bulk [1, 2, 3, 4]. In this section we give a simple deriva-
tion of the RSII braneworld cosmology following J. Soda [22]. Cosmology
on the brane is obtained by allowing the brane to move in the bulk. Equiv-
alently, one could keep the brane fixed at y = 0 while making the metric in
the bulk time dependent.

Consider a time dependent brane hypersurface defined by

r − a(t) = 0, (17)

in AdS-Schwarzschild background [23, 24] where a = a(t) is an arbitrary
positive function. The induced line element on the brane is

ds2
ind = n2(t)dt2 − a(t)2dΩ2

κ, (18)
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where

n2 = f(a)− (∂ta)2

f(a)
, (19)

and f is defined by (8). The junction conditions on the brane with matter

Kµν |r=a−ε =
8πG5

3γ
(σgµν + 3Tµν) (20)

yield
(∂ta)2

n2a2
+
f

a2
=

1

`2σ2
0

(σ + ρ)2. (21)

Now, imposing the fine tuning condition (14) one finds a modified Fried-
mann equation [25, 26, 27, 28].

H2 =
8πGN

3
ρ+

(
4πGN`

3

)2

ρ2 +
µ`2

a4
, (22)

where

H2 = H2 +
κ

a2
, H =

∂ta

na
. (23)

Equation (22) differs from the standard Friedmann equation by the last
two terms on the right-hand side. RSII cosmology is thus subject to as-
trophysical and cosmological tests (see, e.g., Refs. [29, 30]). The deviation
proportional to ρ2 poses no problem as it decays as a−8 in the radiation
epoch and will rapidly become negligible after the end of the high-energy
regime ρ ' σ0. The last term on the right-hand side, the so called “dark
radiation”, for positive µ should not exceed 10% of the total radiation con-
tent in the epoch of BB nucleosynthesis whereas for negative µ could be as
large as the rest of the radiation content [31, 32]. As expected, both one-
sided and two-sided versions of the RSII model yield identical braneworld
cosmologies.

The second Friedmann equation may be easily obtained by combining
the time derivative of (22) with the energy conservation equation

∂tρ+ 3(ρ+ p)
∂ta

a
= 0. (24)

3. Connection with AdS/CFT

AdS/CFT correspondence is a holographic duality between gravity in d+1-
dimensional space-time and quantum conformal field theory (CFT) on the
d-dim boundary. Original formulation stems from string theory: the orig-
inal AdS/CFT conjecture establishes an equivalence of a four dimensional
N = 4 supersymmetric Yang-Mills theory and string theory in a ten di-
mensional AdS5 × S5 bulk [5, 33, 34].
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3.1. RSII braneworld as a cutoff in AdS5

In the RSII model by introducing the boundary in AdS5 at z = zbr instead
of z = 0, the model is conjectured to be dual to a cutoff CFT coupled to
gravity, with z = zbr providing the IR cutoff (corresponding to the UV
cutoff of the boundary CFT) [15]. In the one-sided RSII model, the model
involves a single CFT at the boundary of a single patch of AdS5. In the
two-sided RSII model one would instead require two copies of the CFT,
one for each of the AdS5 patches.

The on-shell bulk action

Sbulk =
1

8πG5

∫
d5x
√
G

[
−R

(5)

2
− Λ5

]
, (25)

is infrared divergent because physical distances diverge at z = 0. The
asymptotically AdS metric near z = 0 can be expanded as

ds2
(5) =

`2

z2

(
gµνdx

µdxν − dz2
)
, (26)

gµν = g(0)
µν + z2g(2)

µν + z4g(4)
µν + z6g(6)

µν + . . . . (27)

Explicit expressions for g
(2n)
µν , n = 1, 2, 3 in terms of arbitrary g

(0)
µν may be

found in Ref. [35]. In particular, we will need

g(2)
µν =

1

2

(
Rµν −

1

6
Rg(0)

µν

)
(28)

and the relation

Trg(4) = −1

4
Tr(g(2))2, (29)

where the trace of a tensor Aµν is defined as

TrA = Aµµ = g(0)µνAµν . (30)

Now, we regularize the action by placing the RSII brane near the AdS
boundary, i.e., at z = ε`, ε� 1, so that the induced metric is

hµν =
1

ε2
(g(0)
µν + ε2`2g(2)

µν + . . .). (31)

The bulk splits in two regions: 0 ≤ z < ε`, and ε` ≤ z ≤ ∞. We can
either discard the region 0 ≤ z < ε` (one-sided regularization, γ = 1) or
invoke the Z2 symmetry and identify two regions (two-sided regularization,
γ = 2). Then, the regularized bulk action is

Sreg
bulk = γSreg

0 =
γ

8πG5

∫
z≥ε`

d5x
√
G

[
−R

(5)

2
− Λ(5)

]
+ SGH[h] (32)
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The renormalized action is obtained by adding counterterms to Sreg
0 and

taking the limit ε→ 0 [35, 36]

Sren
0 [g(0)] = lim

ε→0
(Sreg

0 [G] + S1[h] + S2[h] + S3[h]), (33)

The necessary counterterms are [35]

S1[h] = − 6

16πG5`

∫
d4x
√
−h, (34)

S2[h] = − `

16πG5

∫
d4x
√
−h
(
−R[h]

2

)
, (35)

S3[h] = − `3

16πG5

∫
d4x
√
−h log ε

4

(
Rµν [h]Rµν [h]− 1

3
R2[h]

)
. (36)

Now we demand that the variation with respect to the induced metric hµν
of the total RSII action (the sum of the regularized on shell bulk action
and the brane action (4)) vanishes, i.e., we require

δ(Sreg
bulk[h] + Sbr[h]) = 0, (37)

which may be expressed as

δ

[
γSren

0 − γS3 −
(
σ − 3γ

8π`G5

)∫
d4x
√
−h+

∫
d4x
√
−hLmatt

+
γ`

16πG5

∫
d4x
√
−hR[h]

2

]
= 0. (38)

The third term gives the contribution to the cosmological constant and
may be eliminated by imposing the RSII fine tuning condition (14). The
variation of the scheme dependent S3 may be combined with the first term.
Then, according to the AdS/CFT prescription by functionally differentiat-
ing the renormalized on-shell bulk gravitational action with respect to the

boundary metric g
(0)
µν one obtains the expectation value 〈TCFT

µν 〉 and hence

δ(Sren
0 − S3) =

1

2

∫
d4x
√
−h〈TCFT

µν 〉δhµν , (39)

With this the variation of the action yields Einsteins equations on the
boundary

Rµν −
1

2
Rgµν = 8πGN(γ〈TCFT

µν 〉+ Tmatt
µν ), (40)
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where the energy-momentum tensor Tmatt
µν describes matter on the holo-

graphic brane in addition to the holographic conformal part given by [35]

〈TCFT
µν 〉 = − `3

4πG5

{
g(4)
µν −

1

8

[
(Trg(2))2 − Tr(g(2))2

]
g(0)
µν

−1

2
(g(2))2

µν +
1

4
Trg(2)g(2)

µν

}
. (41)

This is an explicit realization of the AdS/CFT correspondence: the vacuum
expectation value of a boundary CFT operator is obtained solely in terms
of geometrical quantities of the bulk.

3.2. Conformal anomaly

It is of particular interest to check whether the stress tensor TCFT obtained
using AdS/CFT prescription correctly reproduces the conformal anomaly.
From (41) with the help of (28) and (29) we find

〈TCFTµ
µ〉 =

`3

128πG5

(
GGB − C2

)
, (42)

where
GGB = RµνρσRµνρσ − 4RµνRµν +R2 (43)

is the Gauss-Bonnet invariant and

C2 ≡ CµνρσCµνρσ = RµνρσRµνρσ − 2RµνRµν +
1

3
R2 (44)

is the square of the Weyl tensor Cµνρσ. This result should be compared
with the standard conformal anomaly calculated in field theory [37]

〈TCFTµ
µ〉 = bGGB − cC2 + b′�R. (45)

The two results agree if we ignore the last term in (45) and identify

b = c =
G5

128π`3
. (46)

The standard field theory calculations give [37, 38]

b =
ns + (11/2)nf + 62nv

360(4π)2
, c =

ns + 3nf + 12nv

120(4π)2
. (47)

where ns, nf , nv are the numbers of massless scalar bosons, Weyl fermions
and vector bosons, respectively. Hence, generally b 6= c. However, in
the N = 4 U(N) super-Yang-Mills theory, ns = 6N2, nf = 4N2, and
nv = N2, in which case the equality b = c holds and the conformal anomaly
is correctly reproduced by the holographic expression (42) if we identify [39]

`3

G5
=

2N2

π
. (48)
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4. Holographic cosmology

As we have shown in the previous section, in the limit in which the RSII
brane approaches the AdS5 boundary, the geometry on the boundary brane,
referred to as the holographic brane, satisfies a special form of Einstein’s
equations (40). To derive the corresponding cosmology we start from AdS-
Schwarzschild static coordinates in the bulk and make the coordinate trans-
formation

t = t(τ, z), r = r(τ, z). (49)

The line element will take a general form

ds2
(5) =

`2

z2

(
n2(τ, z)dτ2 − a2(τ, z)dΩ2

κ − dz2
)
, (50)

Imposing the boundary conditions at z = 0:

n(τ, 0) = 1, a(τ, 0) = ah(τ), (51)

we obtain the induced metric at the boundary in the general FRW form

ds2
(0) = g(0)

µν dx
µdxν = dτ2 − a2

h(τ)dΩ2
κ. (52)

Solving Einsteins equations in the bulk one finds [8]

a2 = a2
h

[(
1−
H2

hz
2

4

)2

+
1

4

µz4

a4
h

]
, N =

ȧ

ȧh
. (53)

where
H2

h = H2
h +

κ

a2
h

, (54)

and Hh = ȧh/ah is the Hubble expansion rate on boundary. Comparing

the exact gµν(τ, z) in (50) with the expansion (26) we can extract g
(2)
µν and

g
(4)
µν . Then, using the expression (41) we obtain

〈TCFT
µν 〉 = tµν +

1

4
〈TCFTα

α〉g(0)
µν , (55)

where the second term on the right-hand side corresponds to the conformal
anomaly

〈TCFTα
α〉 =

3`3

16πG5

äh

ah
H2

h, (56)

and the first term is a traceless tensor with non-zero components

t00 = −3tii =
3`3

64πG5

(
H4

h +
4µ

a4
h

− äh

ȧh
H2

h

)
. (57)
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Hence, apart from the conformal anomaly, the CFT dual to the time depen-
dent asymptotically AdS5 bulk metric is a conformal fluid with the equation
of state pCFT = ρCFT/3, where ρCFT = t00, pCFT = −tii.

Using this, from the boundary Einstein equations we obtain the holo-
graphic Friedmann equation [8, 7]

H2
h =

`2

4

(
H4

h +
4µ

a4
h

)
+

8πGN

3
ρh. (58)

Here we have used the energy-momentum tensor with nonvanishing com-
ponents

Tmatt
00 = ρh, Tmatt

ij = phg
(0)
ij , (59)

where ρh and ph are the matter energy density and pressure, respectively.
The second Friedmann equation can be derived by combining the time
derivative of (58) with the energy conservation equation

ρ̇h + 3(ρh + ph)Hh = 0. (60)

One finds
äh

ah

(
1− `2

2
H2

h

)
+H2

h =
4πGN

3
(ρh − 3ph). (61)

5. Holographic map

The time dependent bulk spacetime with metric (50) may be regarded
as a z-foliation of the bulk with FRW cosmology on each z-slice [6]. In
particular, at z = zbr one has the RSII cosmology and at at z = 0 the
holographic cosmology. A map between a z-cosmology and z = 0-cosmology
can be constructed using (53) and the inverse relation

a2
h =

a2

2

(
1 +
H2z2

2
+ E

√
1 +H2z2 − µz4

a4

)
, (62)

where

E =

{
−1, for two-sided version,
±1, for one-sided version.

(63)

A functional relationship between Hubble rates can be obtained by mak-
ing use of (53) and (54). One finds

H2 = H2
h

[
1−
H2

hz
2

2
+

1

16

(
H4

h +
4µ

a4
h

)
z4

]−1

. (64)
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The map is schematically illustrated as

dτ2 − a2
hdΩ2

κ
τ→τ̃ //

z
��

(1/n2)dτ̃2 − a2
hdΩ2

κ

z
��

n2dτ2 − a2dΩ2
κ τ→τ̃

// dτ̃2 − a2dΩ2
κ

where τ and τ̃ are the holographic and RSII synchronous times, respectively.
As an example, consider the RSII braneworld at zbr =

√
2` and the

holographic braneworld at z = 0 with the corresponding Hubble rates H2
br

and H2
h. In Fig. 2 we plot H2

br versus H2
h for two values of the black hole

mass parameter µ = 0 (left panel) and µ`4/a4
h = 1/2 with z2

br/`
4 = 2 (right

panel). In both panels the shaded area, corresponding to the physical region
ρh > 0, is determined by the condition

2− 2
√

1− µ`4/a4
h ≤ H

2
h`

2 ≤ 2 + 2
√

1− µ`4/a4
h. (65)

H
br

2

H
h

2

H
br

2

H
h

2

Figure 2: H2
br as a function of H2

h (both in units of z−2
br ) defined by (64)

for µ = 0 (left panel) and µ`4/a4
h = 2 with z2

br/`
2 = 2 (right panel). The

region left from the vertical dashed red line is relevant for the one-sided
version only. The shaded area corresponds to the physical region ρh > 0.

6. Effective energy density

Next, we analyze a few special cases in two scenarios.

1. The RSII scenario with the primary braneworld at z = zbr.

2. The holographic scenario with the primary cosmology on the AdS
boundary at z = 0.

In each of the two scenarios we assume the presence of matter on the
primary brane only and no matter in the bulk.
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RSII scenario

In the RSII scenario the primary braneworld is the RSII brane at z = zbr.
The cosmology on the z = 0 brane emerges as a reflection of the RSII
cosmology. For simplicity we take zbr = ` and we fine tune the tension σ as
in (14). Then, assuming the modified Friedmann equations (58) and (61)
hold on the holographic brane, the effective energy density is given by

ρh

σ0
=

4E(ρ/σ0 + 1− E)

(ρ/σ0 + 1 + E)2 + µ`4/a4
. (66)

where E is defined by (63). Given the equation of state p = p(ρ) on the
RSII brane, the cosmological scale a is derived by integrating (22) and (24).

Thus, the two-sided model with positive energy density and positive µ
maps into a holographic cosmology with negative effective energy density
ρh. For µ = 0 the densityρh diverges with ρ as 1/ρ. The one-sided model
maps into two branches: E = −1 branch identical with the two-sided map
and the E = +1 branch with a smooth positive function ρh = ρh(ρ).

Holographic scenario

Suppose the cosmology on the z = 0 brane is known, i.e., the density ρh,
the pressure ph, and the cosmological scale ah are known. If there is no
matter in the bulk the induced cosmology on an arbitrary z-slice will be
completely determined. Observers on the RSII brane on an arbitrary z-slice
experience an emergent cosmology which is a reflection of the boundary
cosmology. The general expression for the effective energy density ρ on the
RSII brane is rather complicated but simplifies considerably for zbr = `. In
this case

ρ

σ0
=

∣∣∣∣∣∣
1 + ρh/σ0 − ε

√
1− 2ρh/σ0 − µ`4/a4

h

1− ρh/σ0 − ε
√

1− 2ρh/σ0 − µ`4/a4
h

∣∣∣∣∣∣− σ

σ0
, (67)

where ε may take the values +1 or −1 . Hence, the function ρ = ρ(ρh, ah)
is not uniquely defined, although the mapping ah → a is unique (Fig. 3)

For an arbitrary zbr 6= ` in the low density regime (relevant for the one
sided version only), i.e., ρ2

h � σ2
0 and µ`4 � a4

h we find:
a) For ε = −1 at linear order in µ and quadratic order in ρh the effective
energy density

ρ

σ0
= 1− σ

σ0
+
z2

br

`2
ρh

σ0
+

1

2

z2
br

`2

(
z2

br

`2
+ 1

)
ρ2

h

σ2
0

−1

2

z2
br

`2

(
z2

br

`2
− 1

)
µ`4

a4
h

+ . . . . (68)
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ρ

ρh

ρ

ρh

ρ

ρh

ρ

ρh

Figure 3: The effective density ρ on the RSII brane as a function of the
density ρh on the holographic brane (both in units of σ0) for σ = σ0,
ε = −1 (top panels), ε = +1 (bottom panels), and µ`4/a4

h = 0 (left panels),
0.2 (right panels). The full red, dash-dotted black, and dashed blue lines
represent z2

br/`
2 = 0.5, 1, and 2, respectively.

and pressure

p = −(σ0 − σ) +
z2

br

`2
ph + . . . . (69)

Hence, at linear order the effective fluid on the RSII brane satisfies the same
equation of state as the fluid on the holographic brane. The cosmological
constant term will vanish on both branes if the RSII fine tuning condition
is imposed.
b) For ε = +1 at linear order

ρ

σ0
=
z2

br/`
2 + 1

z2
br/`

2 − 1
− σ

σ0
+

z2
br/`

2

(z2
br/`

2 − 1)2

ρh

σ0
−

z2
br/`

2

2(z2
br/`

2 − 1)3

µ`4

a4
h

+ . . . . (70)

Hence, in this case, the effective energy density ρ on the RSII brane differs
from ρh on the holographic brane by a multiplicative constant and diverges
in the limit zbr → `. The effective cosmological constant on the RSII brane
does not vanish even if σ = σ0 in which case

Λbr =
6

`2
z2

br/`
2 + 1

z2
br/`

2 − 1
− 6

`2
. (71)
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7. Conclusions & Outlook

Our study can be summarized as follows:

• We have explicitly constructed the mapping between two cosmological
braneworlds: holographic and RSII .

• The cosmologies are governed by the corresponding modified Fried-
mann equations.

• There is a clear distinction between 1-sided and 2-sided holographic
map with respective 1-sided and 2-sided versions of RSII model.

• In the 2-sided map the low-density regime on the two-sided RSII brane
corresponds to the high negative energy density on the holographic
brane.

• The low density regime is maintained on both branes only in the one-
sided RSII

• We have analyzed the effective energy density in two scenarios: the
RSII scenario with the primary braneworld at z = zbr and the holo-
graphic scenario with the primary cosmology on the AdS boundary at
z = 0. Then, in the holographic and RSII scenarios we will have emer-
gent cosmologies on the RSII and holographic branes, respectively.

It is conceivable that we live in a braneworld with emergent cosmology.
That is, dark energy and dark matter could be emergent phenomena in-
duced by what happens on the primary braneworld. In this regards, the
holographic scenario offers a few interesting possibilities. For example, sup-
pose our universe is a one-sided RSII braneworld the cosmology of which is
emergent in parallel with the primary holographic cosmology. If the energy
density ρh on the holographic brane describes matter with the equation of
state satisfying 3ph + ρh > 0, as for, e.g., cold dark matter, according to
(70) and (71) we will have an asymptotically de Sitter universe on the RSII
brane. If we choose the curvature radius ` so that the cosmological constant
Λbr fits the observed value, the quadratic term will be comparable with the
linear term today but will strongly dominate in the past and hence will
spoil the standard cosmology. However, the standard ΛCDM cosmology
could be recovered by including a negative cosmological constant term in
ρh and ph and fine tune it to cancel Λbr up to a small phenomenologically
acceptable contribution.
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